
cobald Documentation
Release 0.13.0

Eileen Kuehn, Max Fischer

Aug 29, 2022

USER DOCUMENTATION

1 Resource and Control Model 3

2 Daemon Infrastructure and Facilities 7

3 Custom Controllers, Pools and Extensions 13

4 Glossary of Terms 19

5 cobald 21

6 ChangeLog 43

7 Versioning and Releases 45

8 Quick Info 47

9 About 49

10 Indices and tables 51

Python Module Index 53

Index 55

i

ii

cobald Documentation, Release 0.13.0

USER DOCUMENTATION 1

http://cobald.readthedocs.io/en/latest/?badge=latest
https://travis-ci.org/MatterMiners/cobald
https://codecov.io/gh/MatterMiners/cobald
https://pypi.python.org/pypi/cobald/
https://github.com/MatterMiners/cobald/blob/master/LICENSE
https://zenodo.org/badge/latestdoi/129873843

cobald Documentation, Release 0.13.0

2 USER DOCUMENTATION

CHAPTER

ONE

RESOURCE AND CONTROL MODEL

The goal of cobald is to simplify the provisioning of opportunistic resources. This is achieved with a composable
model to define, aggregate, generalise and control resources. The cobald.interfaces codify this into a handful of
primitive building blocks.

1.1 Pool and Control Model

The cobald model for controlling resources is built on four simple types of primitives. Two fundamental primitives
represent the actual resources and the provisioning strategy:

• The adapter handling concrete resources is a Pool. Each Pool merely communicates the total volume of resources
and their overall fitness.

• The decision to add or remove resources is made by a Controller. Each Controller only inspects the fitness of
its Pools and adjusts their desired volume.

These two primitives are sufficient for direct control of simple resources. It is often feasible to control several pools of
resources separately.

Resource 1 Resource 2

Controller Pool Controller Pool

3

cobald Documentation, Release 0.13.0

1.2 Composition and Decoration

For complex tasks it may be necessary to combine resources or change their interaction and appearance.

• The details of managing resources are encoded by Decorators. Each Decorator translates between the specific
Pools and the generic Controllers.

• The combination of several resources is made by CompositePools. Each CompositePool handles several Pools,
but gives the outward appearance of a single Pool.

All four primitives can be combined to express even complex resource and control scenarios. However, there is always
a Controller on one end and a Pool on the other. Since individual primitives can be combined and reused, new use
cases require only a minimum of new implementations.

Resource 1 and 2

Controller Decorator Composite

Decorator Pool

Decorator Pool

1.3 Detail Descriptions

1.3.1 Resource Abstraction via Pools

The fundamental abstraction for resources is the Pool: a representation for a number of indistinguishable resources.

As far as cobald is concerned, it is inconsequential which specific resources make up a pool. This allows each Pool
to implement its own strategy for managing resources. For example, a Pool providing virtual machines may silently
spawn a new machine to replace another.

The purpose of a Pool is just to provide resources, not use them for any specific task. For example, the aforementioned
VM may integrate into a Batch System which provides the VM with work. What matters to cobald is only whether
resources match their underlying usage.

Supply and Demand

Each Pool effectively provides only one type of resources1. The only adjustment possible from the outside is how
many resources are provided. This is expressed as supply and demand:

supply [r/o]
The amount of resources a pool currently provides.

demand [r/w]
The amount of resources a pool is expected to provide.

1 What constitutes a single “type” depends on the intended use of the resource. For example, it might be a generic “bytes of storage space” or a
specific “consecutive bytes of HDD at 10 ms access time and 2500000 hrs MTBF”.

4 Chapter 1. Resource and Control Model

cobald Documentation, Release 0.13.0

Note that demand is not derived by a Pool, but should be adjusted from the outside. The task of a Pool is only to
adjust its supply to match demand.

Allocation versus Utilisation

While a Pool does not calculate the demand for its resources, it has to track and expose their usage. This is expressed
as two attributes that reflect how much and how well resources are used:

allocation [r/o]
Fraction of the supplied resources which are allocated for usage

utilisation [r/o]
Fraction of the supplied resources which are actively used

1.3.2 Transparent Demand Control

Controller Pool

1.3.3 Composing Pools of Resources

1.3. Detail Descriptions 5

cobald Documentation, Release 0.13.0

6 Chapter 1. Resource and Control Model

CHAPTER

TWO

DAEMON INFRASTRUCTURE AND FACILITIES

The cobald.daemon provides the infrastructure to deploy one or more resource control pipelines. Any component
integrated into this infrastructure can be configured and controlled in the same fashion.

2.1 Component Configuration

Configuration of the cobald.daemon is performed at startup via one of two methods: a YAML file or Python code.
While the former is more structured and easier to verify, the latter allows for greater freedom.

The configuration file is the only positional argument when launching the cobald.daemon. The file extension deter-
mines the type of configuration interface to use - .py for Python files and .yaml for YAML files.

$ python3 -m cobald.daemon /etc/cobald/config.yaml
$ python3 -m cobald.daemon /etc/cobald/config.py

2.1.1 The YAML Interface

The top level of a YAML configuration file is a mapping with two sections: the pipeline section setting up a pool
control pipeline, and the logging section setting up the logging facilities. The logging section is optional and follows
the standard configuration dictionary schema.1

The pipeline section must contain a sequence of Controllers, Decorators and Pools. Each pipeline is con-
structed in reverse order: the last element should be a Pool and is constructed first, then recursively passed to its
predecessor for construction.

pool becomes the target of the controller
pipeline:

- !LinearController
low_utilisation: 0.9
high_utilisation: 1.1

- !CpuPool
interval: 1

1 YAML configurations allow for additional sections to configure plugins. Additional sections are logged to the "cobald.runtime.config"
channel.

7

https://docs.python.org/3/library/logging.config.html#configuration-dictionary-schema

cobald Documentation, Release 0.13.0

Object References

YAML configurations support !! tag and ! constructor syntax. These allow to use arbitrary Python objects and regis-
tered plugins, respectively. Both support keyword and positional arguments.

generic python tag for arbitrary objects
!!python/object:cobald.controller.linear.LinearController {low_utilisation: 0.9}
constructor tag for registered plugin
!LinearController
low_utilisation: 0.9

New in version 0.9.3.

Note: The YAML configuration is read using yaml.SafeLoader to avoid arbitrary code execution. Objects must be
marked as safe for loading, either as COBalD plugins or using PyYAML directly.

A legacy format using explicit type references is available, but discouraged. This uses an invocation mechanism that
can use arbitrary callables to construct objects: each mapping with a __type__ key is invoked with its items as keyword
arguments, and the optional __args__ as positional arguments.

pipeline:
same as ``package.module.callable(a, b, keyword1="one", keyword2="two")
- __type__: package.module.callable
__args__:
- a
- b

keyword1: one
keyword2: two

Deprecated since version 0.9.3: Use YAML tags and constructors instead.

2.1.2 Python Code Inclusion

Python configuration files are loaded like regular modules. This allows to define arbitrary types and functions, and
directly chain components or configure logging. At least one pipeline of Controllers, Decorators and Pools should
be instantiated.

from cobald.controller.linear import LinearController

from cobald_demo.cpu_pool import CpuPool
from cobald_demo.draw_line import DrawLineHook

pipeline = LinearController.s(
low_utilisation=0.9, high_allocation=1.1

) >> CpuPool()

As regular modules, Python configurations must explicitly import the components they use. In addition, everything
not bound to a name will be garbage collected. This allows configurations to use temporary objects, e.g. reading from
files or sockets, but means persistent objects (such as a pipeline) must be bound to a name.

8 Chapter 2. Daemon Infrastructure and Facilities

https://pyyaml.org/wiki/PyYAMLDocumentation

cobald Documentation, Release 0.13.0

2.2 Standard Logging Facilities

The cobald.daemon provides several separate logging channels. Each exposes information from a different view
and for a different audience. Both core components and plugins should hook into these channels to supply appropriate
information.

2.2.1 Logging Channels

Channels are separated by a hierarchical logging name.

"cobald.runtime"
Diagnostic information on the health of the daemon and its abstractions. This includes resources initialised (e.g.
databases or modules), and any failures that may affect daemon stability (e.g. unavailable resources).

"cobald.control"
Information specific to the pool control model. This includes decisions made and statistics used for this purpose.

"cobald.monitor"
Monitoring information for automated processing.

Log providers hook into channels by creating a sub-logger. For example, the daemon core uses the "cobald.runtime.
daemon" logger for diagnostics.

The Monitor Channel

In contrast to other channels, the "cobald.monitor" channel provides structured data. This data is suitable for data
transfer formats such as JSON or telegraf. Each entry consists of an identifier and a dictionary of data:

get a separate logger in the 'cobald.monitor' channel
logger = logging.getLogger('cobald.monitor.wheatherapi')
`message` forms the identifier, `args` contains data
logger.info('forecast', {'temperature': 298, 'humidity': 0.45})

Note that the message is not formatted with the content of args` The specific output format is defined by the logging.
Formatter used for a logging.Handler.

LineProtocolFormatter
Formatter for the InfluxDB Line Protocol, as used by InfluxDB and Telegraf. This is a structured format, without
access to the underlying report metadata. The report message always acts as the measurement key.

Supports adding default data as tags, e.g. as LineProtocolFormatter({'latitude': 49,
'longitude': 8}).

forecast,latitude=49,longitude=8 humidity=0.45,temperature=298

cobald.monitor.format_json.JsonFormatter
Formatter for the JSON format. This is an unstructured format, with optional access to the underlying report
metadata.

Supports adding default data, e.g. as JsonFormatter({'latitude': 49, 'longitude': 8}).

{"latitude": 49, "longitude": 8, "temperature": 298, "humidity": 0.45,
"message": "forecast"}

2.2. Standard Logging Facilities 9

https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/logging.html#logging.Handler
https://docs.influxdata.com/influxdb/v1.5/write_protocols/line_protocol_tutorial/

cobald Documentation, Release 0.13.0

2.3 Concurrent Execution

The cobald.daemon provides a dedicated concurrent execution environment. This combines several execution mech-
anisms into a single, consistent runtime. As a result, the daemon can consistently track the lifetime of tasks and react
to failures.

The purpose of this is for components to execute concurrently, while ensuring each component is in a valid state. In
this regard, the execution environment is similar to an init service such as systemd.

2.3.1 Registering Background Services

The primary entry point to the runtime is defining services: the main threads of service instances are automatically
started, tracked and handled by the cobald.daemon. This allows services to update information, manage resources
and react to changing conditions.

A service is defined by applying the service() decorator to a class. This automatically schedules the run method of
any instances for execution as a background task.

@service(flavour=threading)
class MyService(object):

run method of any instances is executed in a thread once the daemon starts
def run():

...

2.3.2 Task Execution and Abortion

Any background task is adopted by the daemon runtime. Adopted tasks are executed separately for each flavour; this
means that async code of the same flavour is never run in parallel. However, tasks of non-async flavour, such as
threading, and different flavours can be run in parallel.

Any adopted tasks are considered self-contained by the runtime. Most importantly, they have no parent that can receive
return values or exceptions.

Warning: Any unhandled return values and exceptions are considered an error. The daemon automatically termi-
nates in this case.

On termination, the daemon aborts all remaining background tasks. Whether this is graceful or not depends on the
flavour of each task. In general, coroutines are gracefully terminated whereas subroutines are not.

2.3.3 Triggering Background Tasks

The execution environment is exposed as cobald.daemon.runtime, an instance of ServiceRunner. Via this entry
point, new tasks may be launched after the daemon has started.

runtime.adopt(payload, *args, flavour, **kwargs)

Run a payload of the appropriate flavour in the background. The caller is not blocked, but cannot receive any
return value or exceptions.

Note: It is a fatal error if payload produces any value or exception.

10 Chapter 2. Daemon Infrastructure and Facilities

cobald Documentation, Release 0.13.0

runtime.execute(payload, *args, flavour, **kwargs)

Run a payload of the appropriate flavour until completion. The caller is blocked during execution, and receives
any return value or exceptions.

If *args or **kwargs are provided, the payload is run as payload(*args, **kwargs).

2.3.4 Available Flavours

Flavours are identified by the underlying module. The following types are currently supported:

asnycio

Coroutines implemented with the asyncio library. Payloads are gracefully cancelled.

trio

Coroutines implemented with the trio library. Payloads are gracefully cancelled.

threading

Subroutines implemented with the threading library. Payloads run as daemons and ungracefully termi-
nated.

2.4 systemd Configs

You can run cobald as a system service. We provide systemd configs for multiple cobald instances run as services.
You can manage several instances which are identified with a systemd instance name.

Create a file named cobald@.service in the /usr/lib/systemd/system directory.

An example of a systemd config file:

[Unit]
Description=COBalD - the Opportunistic Balancing Daemon for %I
Documentation=https://cobald.readthedocs.io
After=network.target
Wants=network-online.target
After=network-online.target

[Install]
RequiredBy=multi-user.target

[Service]
Type=simple
ExecStart=/usr/bin/python3 -m cobald.daemon /etc/cobald/%i.py

In this example, the configs for the different COBalD instances are located at /etc/cobald/instance-name.
py. cobald can handle .py and .yaml configuration files. Please ensure that the chosen python interpreter has
cobald installed! We recommend to use a virtualenv. By using a virtualenv you have to set the ExecStart to
ExecStart={{ virtualenv }}/bin/python -m cobald.daemon /etc/cobald/%i.yaml.

After you created or changed the file you need to run:

$ systemctl daemon-reload

Now you can manage the cobald instance which loads the /etc/cobald/instance-name.py config file.

2.4. systemd Configs 11

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://trio.readthedocs.io/en/stable/reference-core.html#module-trio
https://docs.python.org/3/library/threading.html#module-threading

cobald Documentation, Release 0.13.0

• start one instance of cobald

$ systemctl start cobald@instance-name

• stop the instance of cobald

$ systemctl stop cobald@instance-name

• report the current status of the cobald instance

$ systemctl status cobald@instance-name

• enable cobald instance start at boot time

$ systemctl enable cobald@instance-name

12 Chapter 2. Daemon Infrastructure and Facilities

CHAPTER

THREE

CUSTOM CONTROLLERS, POOLS AND EXTENSIONS

The cobald.daemon is capable of loading any modules and code importable by its Python interpreter. In addition,
plugins can be registered for fast access in configuration files. Extensions are integrated as classes that satisfy the
Controller, Pool or Decorator interfaces. Internally, extensions can be organized and implemented as required.

3.1 Custom Pool Semantics

Adding new types of resources requires writing a new cobald.interfaces.Pool implementation. While adherence
to the interface ensures compatibility, a custom Pool must also conform to some constraints for consistency.

3.1.1 Behaviour of Pool Implementations

The conventions on Pools are minimal, but their prevalence makes following them critical. Basically, the conventions
are implied by the semantics of a Pool’s properties.

Responsiveness of Properties
The properties supply, demand , allocation, and utilisation should respond similar to regular attributes.
Getting and setting properties should return quickly - avoid lengthy computations, queries and interactions with
external processes. Never use locking for arbitrary times.

If you wish to represent external or complex state, buffer values and react to them or update them at regular
intervals.

Ordering of Utilisation and Allocation
The model of allocation and utilisation assumes that only allocated resources can be utilised. As such,
allocation should generally be greater than utilisation. Note that this is a loose assumption that is not
enforced. Deviations due to precision or timing should not have a significant impact.

If you have use-cases where this assumption is not applicable, such as overbooking, you may want to write your
own cobald.interfaces.Controller.

Common Utilisation and Allocation scenarios

Depending on the actual resources to manage, it might not be possible to accurately track allocation or
utilisation. Furthermore, at times it is not desirable to use meaningless accuracy. This is why allocation and
utilisation are purposely unrestrictive. The following illustrates several scenarios how to define the two consis-
tently.

Multi-Dimensional Allocations

13

cobald Documentation, Release 0.13.0

Fig. 1: Allocation of CPU and RAM

3.2 Using and Distributing Extensions

Extensions for cobald are regular Python code accessible to the interpreter. For specific problems, extensions can
be defined directly in a Python configuration file. General purpose and reusable code should be made available as a
Python package. This ensures proper installation and dependency management, and allows quick access from YAML
configuration files.

3.2.1 Configuration Files

Using Python configuration files allows to define arbitrary objects, functions and helpers. This is ideal for minor
modifications of existing objects and experimental extensions. Simply add new definitions to the configuration before
using them:

#/etc/cobald/my_demo.py
from cobald.interface import Controller

from cobald_demo.cpu_pool import CpuPool
from cobald_demo.draw_line import DrawLineHook

custom Controller implementation
class StaticController(Controller):

"""Controller that sets demand to a fixed value"""
def __init__(self, target, demand):

super().__init__(target)
self.target.demand = demand

(continues on next page)

14 Chapter 3. Custom Controllers, Pools and Extensions

cobald Documentation, Release 0.13.0

(continued from previous page)

use custom Controller
pipeline = StaticController.s(demand=50) >> DrawLineHook.s() >> CpuPool(interval=1)

Configuration files are easy to use and modify, but impractical for reusable extensions.

3.2.2 Python Packages

For generic extensions, Python packages simplify distribution and reuse. Packages are individual .py files or folders
containing several .py files; in addition, packages contain metadata for dependency management and installation.

my_controller.py
from cobald.interfaces import Controller

class StaticController(Controller):
def __init__(self, target, demand):

super().__init__(target)
self.target.demand = demand

Packages can be temporarily accessed via PYTHONPATH or permanently installed. Once available, packages can be
imported and used in any configuration.

#/etc/cobald/my_demo.py
from my_controller import StaticController

from cobald_demo.cpu_pool import CpuPool
from cobald_demo.draw_line import DrawLineHook

use custom Controller from package
pipeline = StaticController.s(demand=50) >> DrawLineHook.s() >> CpuPool(interval=1)

Packages require additional effort to create and use, but are easier to automate and maintain. As with any package,
authors should follow the PyPA recommendations for python packaging.

The setup.py File

The setup.py file contains the metadata to install, update and manage a package. For extension packages, it should
contain a dependency on cobald and the keywords should mention cobald for findability.

setup.py

setup(
dependency on `cobald` core package
install_requires=[

'cobald',
...

],
searchable on pypi index
keywords='... cobald',
...

)

3.2. Using and Distributing Extensions 15

https://www.pypa.io/en/latest/
https://packaging.python.org

cobald Documentation, Release 0.13.0

YAML Configuration Plugins

Packages may define two different types of plugins for the YAML configuration format: readers for entire configuration
sections, and tags for individual configuration elements.

Note: YAML Plugins only apply to the YAML configuration format. They have no effect if the Python configuration
format is used.

YAML Tag Plugins

Tag Plugins allow to execute extensions as configuration elements by using YAML tag syntax, such as !MyExtension.
Extensions are treated as callables and receive arguments depending on the type of their element: mappings are used
as keyword arguments, and sequences are used as positional arguments.

resolves to ExtensionClass(foo=2, bar="Hello World!")
- !MyExtension
foo: 2
bar: "Hello World!"

resolves to ExtensionClass(2, "Hello World!")
- !MyExtension
- 2
- "Hello World!"

A packages can declare any callable as a Tag Plugin by adding it to the cobald.config.yaml_constructors group
of entry_points; the name of the entry is converted to a Tag when evaluating the configuration. For example, a
plugin class ExtensionClass defined in mypackage.mymodule can be made available as MyExtension in this way:

setup(
...,
entry_points={

'cobald.config.yaml_constructors': [
'MyExtension = mypackage.mymodule:ExtensionClass',

],
},
...

)

Hint: Tag Plugins are primarily intended to add custom Controller, Decorator, and Pool types for a COBalD
pipeline. If a plugin implements a s() method, this is used automatically.

Note: If a plugin requires eager loading of its YAML configuration, decorate it with cobald.daemon.plugins.
yaml_tag().

New in version 0.12.3: The cobald.daemon.plugins.yaml_tag() and eager evaluation.

16 Chapter 3. Custom Controllers, Pools and Extensions

cobald Documentation, Release 0.13.0

Section Plugins

Section Plugins allow to accept and digest new configuration sections. In addition, the cobald daemon verify that there
are no unexpected configuration sections to protect against typos and misconfiguration. Extensions are entire top-level
sections in the YAML file, which are passed to the plugin after parsing and tag evaluation:

standard cobald pipeline
pipeline:

- !DummyPool
passes [{'some_key': 'a', 'more_key': 'b'}, 'foobar', TagPlugin()]
to the Plugin requesting 'my_plugin'
my_plugin:
- some_key: a
more_key: b

- foobar
- !TagPlugin

A packages can declare any callable as a Section Plugin by adding it to the cobald.config.sections group of
entry_points; the name of the entry is the top-level name of the configuration section. For example, a plugin callable
ConfigReader defined in mypackage.mymodule can request the configuration section my_plugin in this way:

setup(
...,
entry_points={

'cobald.config.sections': [
'my_plugin = mypackage.mymodule:ConfigReader',

],
},
...

)

Note: If a plugin must always be covered by configuration, or should run before or after another plugin, decorate it
with cobald.daemon.plugins.constraints().

New in version 0.12: The cobald.daemon.plugins.constraints() and dependency resolution.

The cobald Namespace

The top-level cobald package itself is a namespace package. This allows the COBalD developers to add, remove or
split sub-packages. In order to not conflict with the core development, do not add your own packages to the cobald
namespace.

3.2. Using and Distributing Extensions 17

https://packaging.python.org/guides/packaging-namespace-packages/#native-namespace-packages

cobald Documentation, Release 0.13.0

18 Chapter 3. Custom Controllers, Pools and Extensions

CHAPTER

FOUR

GLOSSARY OF TERMS

Opportunistic Resources
Any resources available for but not dedicated to a specific task. This includes resources which are acquired
temporarily, but not owned permanently. Strongly put, any resource borrowed for usage outside of its dedicated
purpose. This includes performing a non-dedicated task instead of idling in the absence of a dedicated task.

Indistinguishable Resources
Any resources that are equally suited to fulfill the same tasks. It is irrelevant which specific resource serves which
task. This does not imply strict equality, merely that any differences are inconsequential or negligible.

Pool
A collection of resources which are indistinguishable.

19

cobald Documentation, Release 0.13.0

20 Chapter 4. Glossary of Terms

CHAPTER

FIVE

COBALD

5.1 cobald namespace

5.1.1 Subpackages

cobald.composite package

Submodules

cobald.composite.factory module

class cobald.composite.factory.FactoryPool(*args, **kwargs)
Bases: CompositePool

Composition that adds and removes pools to satisfy demand

Parameters

• factory – a callable that produces a new Pool

• interval – how often to adjust the number of children

Adjustment uses two extensions that children must respond to adequately:

• When spawned via factory(), children shall already be set to their expected demand.

• When disabled via demand=0, children shall shut down and free any resources and tasks.

Once spawned, children are free to adjust their demand if required. A child may disable itself permanently by
setting its own demand = 0. The FactoryPool inspects the demand for all its children before spawning or
disabling any children.

Any child which satisfies supply > 0 or demand > 0 is considered active and contributes to the FactoryPool
supply, demand, allocation, and utilisation. The FactoryPool makes no assumption about the validity
or fitness of active children. It is the responsibility of children to report their status accordingly. For example, if a
child shuts down and does not allocate its supply further, it should scale its reported allocation accordingly.

property allocation

Fraction of the provided resources which are assigned for usage

property children

The individual resource providers making up this pool

21

cobald Documentation, Release 0.13.0

property demand

The volume of resources to be provided by this pool

async run()

Service entry point

property supply

The volume of resources that is provided by this pool

property utilisation

Fraction of the provided resources which are actively used

cobald.composite.uniform module

class cobald.composite.uniform.UniformComposite(*children: Pool)
Bases: CompositePool

Uniform composition of several pools, with each pool weighted the same

property allocation

Fraction of the provided resources which are assigned for usage

children = []

property demand

The volume of resources to be provided by this pool

property supply

The volume of resources that is provided by this pool

property utilisation

Fraction of the provided resources which are actively used

cobald.composite.weighted module

class cobald.composite.weighted.WeightedComposite(*children: Pool, weight:
typing_extensions.Literal[supply, utilisation,
allocation] = 'supply')

Bases: CompositePool

Composition of pools weighted by their current state

The aggregation of children’s demand , utilisation and allocation is weighted by each child’s weight.
Children can be weighted by their supply, utilisation or allocation. Note that weighting the demand
only applies to distributing it to children; the composite’s demand is always exactly as set by its controller.

If the total weight is 0, the following fallback applies:

• demand is applied uniformly, and

• utilisation and allocation are assumed 1 if there are no children, 0 otherwise.

The latter rule expresses that the total fitness of a Pool is 0 either if the fitness of all its children is 0, or there are
no children.

property allocation

Fraction of the provided resources which are assigned for usage

22 Chapter 5. cobald

cobald Documentation, Release 0.13.0

children = []

property demand

The volume of resources to be provided by this pool

property supply

The volume of resources that is provided by this pool

property utilisation

Fraction of the provided resources which are actively used

cobald.controller package

Submodules

cobald.controller.linear module

class cobald.controller.linear.LinearController(*args, **kwargs)
Bases: Controller

Controller that linearly increases or decreases demand

Parameters

• target – the pool to manage

• low_utilisation – pool utilisation below which resources are decreased

• high_allocation – pool allocation above which resources are increased

• rate – maximum change of demand in resources per second

• interval – interval between adjustments in seconds

regulate(interval)

async run()

Service entry point

cobald.controller.relative_supply module

class cobald.controller.relative_supply.RelativeSupplyController(*args, **kwargs)
Bases: Controller

Controller that adjusts demand relative to supply

Parameters

• target – the pool to manage

• low_utilisation – pool utilisation below which resources are decreased

• high_allocation – pool allocation above which resources are increased

• low_scale – scale of target.supply when decreasing resources

• high_scale – scale of target.supply when increasing resources

• interval – interval between adjustments in seconds

5.1. cobald namespace 23

cobald Documentation, Release 0.13.0

regulate(interval)

async run()

Service entry point

cobald.controller.stepwise module

cobald.controller.stepwise.ControlRule

Individual control rule for a pool on a given interval

When a rule for a Stepwise is invoked, it receives the pool to manage and the interval elapsed since the last
modification. It should either return the new demand , or None to indicate no change; the latter can also mean
that the function does not hit a return statement.

\ rule(pool: Pool, interval: float) -> Optional[float]

Note that a rule should not modify the pool directly.

alias of Callable[[Pool, float], Optional[float]]

class cobald.controller.stepwise.RangeSelector(base: Callable[[Pool, float], Optional[float]], *rules:
Tuple[float, Callable[[Pool, float], Optional[float]]])

Bases: object

Container that stores rules for the range of their supply bounds

Parameters

• base – base rule that has no lower bound

• rules – lower bound and its control rule

get_rule(supply: float)

class cobald.controller.stepwise.Stepwise(*args, **kwargs)
Bases: Controller

Controller that selects from several strategies based on supply

See
UnboundStepwise allows creating Stepwise instances via decorators.

async run()

Service entry point

class cobald.controller.stepwise.UnboundStepwise(base: Callable[[Pool, float], Optional[float]])
Bases: object

Decorator interface for constructing a Stepwise controller

Apply this as a decorator to a ControlRule callable to create a basic controller skeleton. The initial callable
forms the base rule. Additional rules can be added for specific supply thresholds using add().

The skeleton can be used like a regular Controller: calling it with a Pool and update interval creates a
Controller instance with the given rules for the Pool.

initial controller skeleton from base case
@stepwise
def control(pool: Pool, interval):

return 10
(continues on next page)

24 Chapter 5. cobald

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

cobald Documentation, Release 0.13.0

(continued from previous page)

additional rules above specific supply thresholds
@control.add(supply=10)
def quantized(pool: Pool, interval):

if pool.utilisation < 0.5:
return pool.demand - 1

elif pool.allocation > 0.5:
return pool.demand + 1

@control.add(supply=100)
def continuous(pool: Pool, interval):

if pool.utilisation < 0.5:
return pool.demand * 1.1

elif pool.allocation > 0.5:
return pool.demand * 0.9

create controller from skeleton
pipeline = control(pool, interval=10)

add(rule: Callable[[Pool, float], Optional[float]], *, supply: float)→ Callable[[Pool, float], Optional[float]]
add(rule: None, *, supply: float)→ Callable[[Callable[[Pool, float], Optional[float]]], Callable[[Pool, float],

Optional[float]]]
Register a new rule above a given supply threshold

Registration supports a single-argument form for use as a decorator, as well as a two-argument form for
direct application. Use the former for def or class definitions, and the later for lambda functions and
existing callables.

@control.add(supply=10)
def linear(pool, interval):

if pool.utilisation < 0.75:
return pool.supply - interval

elif pool.allocation > 0.95:
return pool.supply + interval

control.add(
lambda pool, interval: pool.supply * (

1.2 if pool.allocation > 0.75 else 0.9
),
supply=100

)

s(*args, **kwargs)→ Partial[Stepwise]
Create an unbound prototype of this class, partially applying arguments

@stepwise
def control(pool: Pool, interval):

return 10

pipeline = control.s(interval=20) >> pool

Note
The partial rules are sealed, and add() cannot be called on it.

5.1. cobald namespace 25

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float

cobald Documentation, Release 0.13.0

cobald.controller.stepwise.stepwise

alias of UnboundStepwise

cobald.controller.switch module

class cobald.controller.switch.DemandSwitch(*args, **kwargs)
Bases: Controller

Controller that dispatches to slaved controllers based on demand

DemandSwitch(pool, linear_control, 10, supply_control)

Parameters

• target – the pool on which to regulate demand

• default – controller to use by default

• slaves – pairs of minimum demand to switch and corresponding controller

• interval – interval between adjustments in seconds

regulate(interval)

async run()

Service entry point

cobald.daemon package

cobald.daemon.runtime = <cobald.daemon.runners.service.ServiceRunner object>

The runner invoked on daemon startup

cobald.daemon.service(flavour)
Mark a class as implementing a Service

Each Service class must have a run method, which does not take any arguments. This method is adopt()ed
after the daemon starts, unless

• the Service has been garbage collected, or

• the ServiceUnit has been cancel()ed.

For each service instance, its ServiceUnit is available at service_instance.__service_unit__.

Subpackages

cobald.daemon.config package

Submodules

cobald.daemon.config.mapping module

26 Chapter 5. cobald

cobald Documentation, Release 0.13.0

exception cobald.daemon.config.mapping.ConfigurationError(what: Any, where: Optional[str] =
None)

Bases: Exception

cobald.daemon.config.mapping.M

type of a mapping element, matching JSON/YAML

alias of TypeVar(‘M’, str, int, float, bool, dict, list)

class cobald.daemon.config.mapping.SectionPlugin(section: str, digest: Callable[[M], Any],
requirements: PluginRequirements)

Bases: Generic[M]

Plugin to digest a top-level configuration section

Parameters

• section – Name of the section to digest

• digest – callable that receives the section

• requirements – plugin requirements

property after

property before

digest

classmethod load(entry_point: EntryPoint)→ SectionPlugin
Load a plugin from a pre-parsed entry point

Parses the following options:

required
If present implies required=True.

before=other
This plugin must be processed before other.

after=other
This plugin must be processed after other.

property required

requirements

section

class cobald.daemon.config.mapping.Translator

Bases: object

Translator from a mapping to an initialised object hierarchy

construct(mapping: dict, **kwargs)
Construct an object from a mapping

Parameters

• mapping – constructor definition, with __type__ and keyword arguments

• kwargs – additional keyword arguments to pass to the constructor

5.1. cobald namespace 27

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

cobald Documentation, Release 0.13.0

static load_name(absolute_name: str)
Load an object based on an absolute, dotted name

translate_hierarchy(structure: M, *, where: str = '', **construct_kwargs)→ M

cobald.daemon.config.mapping.configure_logging(logging_mapping: dict)

cobald.daemon.config.mapping.load_configuration(config_data: Dict[str, Any], plugins:
Tuple[SectionPlugin] = ())→ Dict[SectionPlugin,
Any]

Load the configuration from a mapping, applying plugins to sections

Parameters

• config_data – the raw configuration without any plugins applied

• plugins – all plugins that might apply, in order

Returns
the output of all applied plugins

cobald.daemon.config.python module

cobald.daemon.config.python.load_configuration(path)
Load a configuration from a module stored at path

The path must end in a valid file extension for the appropriate module type, such as .py or .pyc for a plaintext
or bytecode python module.

Raises
ValueError – if the extension does not mark a known module type

cobald.daemon.config.yaml module

cobald.daemon.config.yaml.load_configuration(path: str, loader:
~typing.Type[~yaml.loader.BaseLoader] = <class
'yaml.loader.SafeLoader'>, plugins: ~typ-
ing.Tuple[~cobald.daemon.config.mapping.SectionPlugin]
= ())

cobald.daemon.config.yaml.yaml_constructor(factory: Callable[[...], R], *, eager: bool = False)→
Callable[[...], R]

Convert a factory function/class to a YAML constructor

Parameters

• factory – the factory function/class

• eager – whether the YAML must be evaluated eagerly

Returns
factory constructor

Applying this helper to a factory allows it to be used as a YAML constructor, without it knowing about YAML
itself. It properly constructs nodes and converts mapping nodes to factory(**node), sequence nodes to
factory(*node), and scalar nodes to factory().

28 Chapter 5. cobald

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable

cobald Documentation, Release 0.13.0

For example, registering the constructor yaml_constructor(factory) as !factory means the following
YAML is converted to factory(a=0.3, b=0.7):

- !factory
a: 0.3
b: 0.7

Since YAML can express recursive data, nested data structures are evaluated lazily by default. Set eager=True
to enforce eager evaluation before calling the constructor.

cobald.daemon.core package

Submodules

cobald.daemon.core.cli module

cobald.daemon.core.config module

class cobald.daemon.core.config.COBalDLoader(stream)
Bases: SafeLoader

Loader with access to COBalD configuration constructors

class cobald.daemon.core.config.PipelineTranslator

Bases: Translator

Translator for cobald pipelines

This allows for YAML configurations to have one or several pipeline elements. Each pipeline is translated
as a series of nested elements, the way a Controller receives a Pool.

pipeline:
same as ``package.module.callable(a, b, keyword1="one", keyword2="two")
- __type__: package.module.Controller
interval: 20

- __type__: package.module.Pool

translate_hierarchy(structure, *, where='', **construct_kwargs)

cobald.daemon.core.config.add_constructor_plugins(entry_point_group: str, loader:
Type[BaseLoader])→ None

Add PyYAML constructors from an entry point group to a loader

Parameters

• loader – the PyYAML loader which uses the plugins

• entry_point_group – entry point group to search

Note: This directly modifies the loader by calling add_constructor().

cobald.daemon.core.config.load(config_path: str)
Load a configuration and keep it alive for the given context

5.1. cobald namespace 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

cobald Documentation, Release 0.13.0

Parameters
config_path – path to a configuration file

cobald.daemon.core.config.load_pipeline(content: list)
Load a cobald pipeline of Controller >> . . . >> Pool from a configuration section

Parameters
content – content of the configuration section

Returns

cobald.daemon.core.config.load_section_plugins(entry_point_group: str)→ Tuple[SectionPlugin]
Load configuration plugins from an entry point group

Parameters
entry_point_group – entry point group to search

Returns
all loaded plugins

cobald.daemon.core.logger module

cobald.daemon.core.logger.create_handler(target: str)
Create a handler for logging to target

cobald.daemon.core.logger.initialise_logging(level: str, target: str, short_format: bool)
Initialise basic logging facilities

cobald.daemon.core.main module

Daemon core specific to cobald

cobald.daemon.core.main.cli_run()

Run the daemon from a command line interface

cobald.daemon.core.main.run(configuration: str, level: str, target: str, short_format: bool)
Run the daemon and all its services

cobald.daemon.runners package

Submodules

cobald.daemon.runners.async_tools module

cobald.daemon.runners.asyncio_runner module

class cobald.daemon.runners.asyncio_runner.AsyncioRunner(asyncio_loop: AbstractEventLoop)
Bases: BaseRunner

Runner for coroutines with asyncio

All active payloads are actively cancelled when the runner is closed.

30 Chapter 5. cobald

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/asyncio.html#module-asyncio

cobald Documentation, Release 0.13.0

async aclose()

Shut down this runner

flavour = <module 'asyncio' from
'/home/docs/.pyenv/versions/3.7.9/lib/python3.7/asyncio/__init__.py'>

async manage_payloads()

Implementation of managing payloads when run()

This method must continuously execute payloads sent to the runner. It may only return when stop()
is called or if any orphaned payload return or raise. In the latter case, OrphanedReturn or the raised
exception must re-raised by this method.

register_payload(payload: Callable[[], Awaitable])
Register payload for background execution in a threadsafe manner

This runs payload as an orphaned background task as soon as possible. It is an error for payload to return
or raise anything without handling it.

run_payload(payload: Callable[[], Coroutine])
Execute payload and return its result in a threadsafe manner

This runs payload as soon as possible, blocking until completion. Should payload return or raise any-
thing, it is propagated to the caller.

cobald.daemon.runners.asyncio_watcher module

cobald.daemon.runners.base_runner module

class cobald.daemon.runners.base_runner.BaseRunner(asyncio_loop: AbstractEventLoop)
Bases: object

Concurrency backend on top of asyncio

abstract async aclose()

Shut down this runner

flavour = None

abstract async manage_payloads()

Implementation of managing payloads when run()

This method must continuously execute payloads sent to the runner. It may only return when stop()
is called or if any orphaned payload return or raise. In the latter case, OrphanedReturn or the raised
exception must re-raised by this method.

async ready()

Wait until the runner is ready to accept payloads

abstract register_payload(payload)
Register payload for background execution in a threadsafe manner

This runs payload as an orphaned background task as soon as possible. It is an error for payload to return
or raise anything without handling it.

5.1. cobald namespace 31

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Awaitable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/functions.html#object

cobald Documentation, Release 0.13.0

async run()

Execute all current and future payloads in an asyncio coroutine

This method will continuously execute payloads sent to the runner. It only returns when stop() is called
or if any orphaned payload returns or raises. In the latter case, OrphanedReturn or the raised exception
is re-raised by this method.

Implementations should override manage_payloads() to customize their specific parts.

abstract run_payload(payload)
Execute payload and return its result in a threadsafe manner

This runs payload as soon as possible, blocking until completion. Should payload return or raise any-
thing, it is propagated to the caller.

stop()

Stop execution of all current and future payloads and block until success

exception cobald.daemon.runners.base_runner.OrphanedReturn(who, value)
Bases: Exception

A runnable returned a value without anyone to receive it

cobald.daemon.runners.guard module

cobald.daemon.runners.guard.exclusive(via=<built-in function allocate_lock>)→ Callable[[C], C]
Mark a callable as exclusive

Parameters
via – factory for a Lock to guard the callable

Guards the callable against being entered again before completion. Explicitly raises a RuntimeError on viola-
tion.

Note
If applied to a method, it is exclusive across all instances.

cobald.daemon.runners.meta_runner module

class cobald.daemon.runners.meta_runner.MetaRunner

Bases: object

Unified interface to schedule subroutines and coroutines for concurrent execution

register_payload(*payloads, flavour: module)
Queue one or more payloads for execution after its runner is started

run()

Run all runners, blocking until completion or error

run_payload(payload, *, flavour: module)
Execute one payload and return its output

This method will block until the payload is completed. It is an error to call it during initialisation before
the runners are started.

32 Chapter 5. cobald

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#object

cobald Documentation, Release 0.13.0

runner_types = (<class 'cobald.daemon.runners.trio_runner.TrioRunner'>, <class
'cobald.daemon.runners.asyncio_runner.AsyncioRunner'>, <class
'cobald.daemon.runners.thread_runner.ThreadRunner'>)

property runners

stop()

Stop all runners

cobald.daemon.runners.service module

class cobald.daemon.runners.service.ServiceRunner(accept_delay: float = 1)
Bases: object

Runner for coroutines, subroutines and services

The service runner prevents silent failures by tracking concurrent tasks and therefore provides safer concurrency.
If any task fails with an exception or provides unexpected output values, this is registered as an error; the runner
will gracefully shut down all tasks in this case.

To provide async concurrency, the runner also manages common async event loops and tracks them for failures
as well. As a result, async code should usually use the “current” event loop directly.

accept()

Start accepting synchronous, asynchronous and service payloads

Since services are globally defined, only one ServiceRunner may accept() payloads at any time.

adopt(payload, *args, flavour: module, **kwargs)
Concurrently run payload in the background

If *args* and/or **kwargs are provided, pass them to payload upon execution.

execute(payload, *args, flavour: module, **kwargs)
Synchronously run payload and provide its output

If *args* and/or **kwargs are provided, pass them to payload upon execution.

shutdown()

Shutdown the accept loop and stop running payloads

class cobald.daemon.runners.service.ServiceUnit(service, flavour)
Bases: object

Definition for running a service

Parameters

• service – the service to run

• flavour – runner flavour to use for running the service

property running

start(runner: MetaRunner)

classmethod units()→ Set[ServiceUnit]
Container of all currently defined units

5.1. cobald namespace 33

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Set

cobald Documentation, Release 0.13.0

cobald.daemon.runners.service.service(flavour)
Mark a class as implementing a Service

Each Service class must have a run method, which does not take any arguments. This method is adopt()ed
after the daemon starts, unless

• the Service has been garbage collected, or

• the ServiceUnit has been cancel()ed.

For each service instance, its ServiceUnit is available at service_instance.__service_unit__.

cobald.daemon.runners.thread_runner module

class cobald.daemon.runners.thread_runner.ThreadRunner(asyncio_loop: AbstractEventLoop)
Bases: BaseRunner

Runner for subroutines with threading

Active payloads are not cancelled when the runner is closed. Only program termination forcefully cancels leftover
payloads.

async aclose()

Shut down this runner

flavour = <module 'threading' from
'/home/docs/.pyenv/versions/3.7.9/lib/python3.7/threading.py'>

async manage_payloads()

Implementation of managing payloads when run()

This method must continuously execute payloads sent to the runner. It may only return when stop()
is called or if any orphaned payload return or raise. In the latter case, OrphanedReturn or the raised
exception must re-raised by this method.

register_payload(payload)
Register payload for background execution in a threadsafe manner

This runs payload as an orphaned background task as soon as possible. It is an error for payload to return
or raise anything without handling it.

run_payload(payload)
Execute payload and return its result in a threadsafe manner

This runs payload as soon as possible, blocking until completion. Should payload return or raise any-
thing, it is propagated to the caller.

cobald.daemon.runners.trio_runner module

class cobald.daemon.runners.trio_runner.TrioRunner(asyncio_loop: AbstractEventLoop)
Bases: BaseRunner

Runner for coroutines with trio

All active payloads are actively cancelled when the runner is closed.

async aclose()

Shut down this runner

34 Chapter 5. cobald

https://docs.python.org/3/library/threading.html#module-threading
https://trio.readthedocs.io/en/stable/reference-core.html#module-trio

cobald Documentation, Release 0.13.0

flavour = <module 'trio' from '/home/docs/checkouts/readthedocs.org/user_builds/
cobald/envs/stable/lib/python3.7/site-packages/trio/__init__.py'>

async manage_payloads()

Implementation of managing payloads when run()

This method must continuously execute payloads sent to the runner. It may only return when stop()
is called or if any orphaned payload return or raise. In the latter case, OrphanedReturn or the raised
exception must re-raised by this method.

async ready()

Wait until the runner is ready to accept payloads

register_payload(payload: Callable[[], Awaitable])
Register payload for background execution in a threadsafe manner

This runs payload as an orphaned background task as soon as possible. It is an error for payload to return
or raise anything without handling it.

run_payload(payload: Callable[[], Coroutine])
Execute payload and return its result in a threadsafe manner

This runs payload as soon as possible, blocking until completion. Should payload return or raise any-
thing, it is propagated to the caller.

Submodules

cobald.daemon.debug module

class cobald.daemon.debug.NameRepr(target)
Bases: object

Lazy pretty formatter for name of objects

cobald.daemon.debug.pretty_module(obj: module)→ str

cobald.daemon.debug.pretty_partial(obj: partial)→ str

cobald.daemon.debug.pretty_ref(obj: Any)→ str
cobald.daemon.debug.pretty_ref(obj: partial)→ str
cobald.daemon.debug.pretty_ref(obj: module)→ str

Pretty object reference using module.path:qual.name format

cobald.decorator package

Submodules

cobald.decorator.buffer module

class cobald.decorator.buffer.Buffer(*args, **kwargs)
Bases: PoolDecorator

A timed buffer for changes to a pool

Parameters

5.1. cobald namespace 35

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Awaitable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

cobald Documentation, Release 0.13.0

• target – the pool to which changes are applied

• window – interval after which changes are applied

Any changes made to demand are stored internally. Every window seconds, the final demand is applied to
target.

demand = 0.0

async run()

Service entry point

cobald.decorator.coarser module

cobald.decorator.limiter module

cobald.decorator.logger module

class cobald.decorator.logger.Logger(target: Pool, name: Optional[str] = None, message: str = 'demand
= %(value)s [demand=%(demand)s, supply=%(supply)s,
utilisation=%(utilisation).2f, allocation=%(allocation).2f]', level:
int = 20)

Bases: PoolDecorator

Log a message on every change of demand

Parameters

• name – name of the logging.Logger to log to

• message – format for message to emit on every change

• level – numerical logging level

The message parameter is used as a %-style format string with named fields. Valid named format fields are

value
for the new demand being set,

demand, supply, utilisation and allocation
for the current state of target, and

target
for the target pool itself.

For example, a message of "adjust demand from %(demand)s to %(value)s" will log the old and new
demand value.

Deprecated since version 0.12.2: The consumption format field. Use allocation instead.

property demand

The volume of resources to be provided by this site

property name: str

36 Chapter 5. cobald

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str

cobald Documentation, Release 0.13.0

cobald.decorator.standardiser module

class cobald.decorator.standardiser.Standardiser(target: Pool, minimum: float = -inf, maximum: float
= inf, granularity: int = 1, backlog: float = inf,
surplus: float = inf)

Bases: PoolDecorator

Limits for changes to the demand of a pool

Parameters

• target – the pool on which changes are standardised

• minimum – minimum target.demand allowed

• maximum – maximum target.demand allowed

• granularity – granularity of target.demand

• surplus – how much target.demand may be above target.supply

• backlog – how much target.demand may be below target.supply

The supply and backlog clamp the demand such that supply - backlog <= demand <= supply +
surplus holds.

The default values apply no limits at all so that isolated limits may be used. When several limits are set,
granularity has the weakest priority, both surplus and backlog may limit the result of granularity,
and minimum and maximum overrule all other limits.

property demand: float

The volume of resources to be provided by this site

cobald.interfaces package

Interfaces for primitives of the cobald model

Each Pool provides a varying number of resources. A Controller adjusts the number of resources that a Pool must
provide. Several Pools can be combined in a single CompositePool to appear as one. To modify how a Pool presents
or digests data, any number of PoolDecorator may proceed it.

Controller PoolDecorator CompositePool

Pool

Pool

class cobald.interfaces.CompositePool

Bases: Pool

Concatenation of multiple providers for a number of indistinguishable resources

5.1. cobald namespace 37

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

cobald Documentation, Release 0.13.0

abstract property allocation: float

Fraction of the provided resources which are assigned for usage

abstract property children: List[Pool]

The individual resource providers making up this pool

abstract property demand

The volume of resources to be provided by this pool

abstract property supply

The volume of resources that is provided by this pool

abstract property utilisation: float

Fraction of the provided resources which are actively used

class cobald.interfaces.Controller(target: Pool)
Bases: object

Controller adjusting the demand in a Pool

Parameters
target – the resource pool for which demand is adjusted

classmethod s(*args, **kwargs)→ Partial[C]
Create an unbound prototype of this class, partially applying arguments

controller = Controller.s(interval=20)

pipeline = controller(rate=10) >> pool

class cobald.interfaces.Partial(ctor: Type[C_co], *args, __leaf__, **kwargs)
Bases: Generic[C_co]

Partial application and chaining of Pool Controllers and Decorators

This class acts similar to functools.partial, but allows for repeated application (currying) and explicit bind-
ing via the >> operator.

incrementally prepare controller parameters
control = Partial(Controller, rate=10, interval=10)
control = control(low_utilisation=0.5, high_allocation=0.9)

apply target by chaining
pipeline = control >> Decorator() >> Pool()

Note
The keyword argument __leaf__ is reserved for internal usage.

Note
Binding Controllers and Decorators creates a temporary PartialBind. Only binding to a
Pool as the last element creates a concrete binding.

args

ctor

kwargs

38 Chapter 5. cobald

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Generic

cobald Documentation, Release 0.13.0

leaf

class cobald.interfaces.Pool

Bases: object

Individual provider for a number of indistinguishable resources

abstract property allocation: float

Fraction of the provided resources which are assigned for usage

abstract property demand: float

The volume of resources to be provided by this pool

classmethod s(*args, **kwargs)→ Partial[C]
Create an unbound prototype of this class, partially applying arguments

pool = RemotePool.s(port=1337)

pipeline = controller >> pool(host='localhost')

abstract property supply: float

The volume of resources that is provided by this pool

abstract property utilisation: float

Fraction of the provided resources which are actively used

class cobald.interfaces.PoolDecorator(target: Pool)
Bases: Pool

Decorator modifying how a pool provides resources

Parameters
target – the resource pool for which demand is adjusted

property allocation: float

Fraction of the provided resources which is assigned for usage

property demand

The volume of resources to be provided by this site

classmethod s(*args, **kwargs)→ Partial[C]
Create an unbound prototype of this class, partially applying arguments

decorator = Buffer.s(window=20)

pipeline = controller >> decorator >> pool

property supply

The volume of resources that is provided by this site

property utilisation: float

Fraction of the provided resources which is actively used

5.1. cobald namespace 39

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

cobald Documentation, Release 0.13.0

cobald.monitor package

Submodules

cobald.monitor.format_json module

class cobald.monitor.format_json.JsonFormatter(fmt: Optional[dict] = None, datefmt: Optional[str] =
None)

Bases: Formatter

Formatter that emits data as JSON

Parameters

• fmt – default data for all records

• datefmt – format for timestamps

The datefmt parameter has almost the same meaning as Formatter. Setting it to None uses the default time
format. However, setting it to any other value that is boolean false excludes the timestamp from reports.

format(record: LogRecord)
Format the specified record as text.

The record’s attribute dictionary is used as the operand to a string formatting operation which yields the
returned string. Before formatting the dictionary, a couple of preparatory steps are carried out. The message
attribute of the record is computed using LogRecord.getMessage(). If the formatting string uses the time
(as determined by a call to usesTime(), formatTime() is called to format the event time. If there is exception
information, it is formatted using formatException() and appended to the message.

cobald.monitor.format_line module

class cobald.monitor.format_line.LineProtocolFormatter(tags: Optional[Union[Dict[str, Any],
Set[str]]] = None, resolution:
Optional[float] = None)

Bases: Formatter

Formatter that emits data as InfluxDB Line Protocol

Parameters

• tags – record data to use as tags

• resolution – resolution of timestamps in seconds

The tags act as a whitelist for record keys if they are an iterable. When a dictionary is supplied, its values act
as default values if the key is not in a record.

The resolution allows summarising data by downsampling the timestamps to the given resolution, e.g. for a
resolution of 10 you can expect timestamps 10, 20, 30, . . . If resolution is None the timestamp is omitted
from the Line Protocol and Telegraf will take care on setting the current timestamp.

format(record: LogRecord)→ str
Format the specified record as text.

The record’s attribute dictionary is used as the operand to a string formatting operation which yields the
returned string. Before formatting the dictionary, a couple of preparatory steps are carried out. The message
attribute of the record is computed using LogRecord.getMessage(). If the formatting string uses the time

40 Chapter 5. cobald

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/stdtypes.html#str

cobald Documentation, Release 0.13.0

(as determined by a call to usesTime(), formatTime() is called to format the event time. If there is exception
information, it is formatted using formatException() and appended to the message.

cobald.monitor.format_line.escape_field(field: T)→ T

cobald.monitor.format_line.escape_key(key: str)→ str

cobald.monitor.format_line.line_protocol(name, tags: Optional[dict] = None, fields: Optional[dict] =
None, timestamp: Optional[float] = None)→ str

Format a report as per InfluxDB line protocol

Parameters

• name – name of the report

• tags – tags identifying the specific report

• fields – measurements of the report

• timestamp – when the measurement was taken, in seconds since the epoch

cobald.utility package

exception cobald.utility.InvariantError

Bases: Exception

An invariant is violated

cobald.utility.enforce(condition: bool, exception: BaseException = InvariantError())
Enforce that condition is set by raising exception otherwise

This is a replacement for assert statements as part of validation. It cannot be disabled with -O and may raise
arbitrary exceptions.

def sqrt(value):
condition(value > 0, ValueError('value must be greater than zero')
return math.sqrt(value)

cobald.utility.pairwise(iterable)
Iterator yielding consecutive pairs from iterable

Submodules

cobald.utility.primitives module

5.1. cobald namespace 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#BaseException

cobald Documentation, Release 0.13.0

42 Chapter 5. cobald

CHAPTER

SIX

CHANGELOG

6.1 0.13 Series

6.1.1 Version [0.13.0] - 2022-08-16

• [Changed] Configuration is processed after daemon and asyncio initialisation

• [Changed] Daemon core implementation is based on asyncio

6.2 0.12 Series

6.2.1 Version [0.12.3] - 2021-10-29

• [Added] YAML !tags may be eagerly evaluated

6.2.2 Version [0.12.2] - 2021-09-15

• [Fixed] pipeline configuration may combine __type__ and !yaml style

• [Fixed] pipeline configuration no longer suppresses TypeError

6.2.3 Version [0.12.1] - 2020-04-15

• [Fixed] fallback for fitness of WeightedComposite depends on supply

6.2.4 Version [0.12.0] - 2020-02-26

• [Changed] Section Plugin settings are now specified via decorators

43

cobald Documentation, Release 0.13.0

6.3 0.11 Series

6.3.1 Version [0.11.0] - 2020-02-24

• [Changed] COBalD configuration files may include additional sections

6.4 0.10 Series

6.4.1 Version [0.10.0] - 2019-09-03

• [Added] Pools can be templated via .s in Python configuration files

• [Added] YAML configuration files support plugins via !MyPlugin tags

• [Added] the cobald namespace allows for external plugin packages

• [Fixed] fixed Line Protocol sending illegal content

• [Security] YAML configuration files no longer allow arbitrary !!python/object tags

44 Chapter 6. ChangeLog

CHAPTER

SEVEN

VERSIONING AND RELEASES

The COBalD versioning follows Semantic Versioning. Releases are automatically pushed to PyPI from the GitHub
COBalD repository.

7.1 Versioning and API stability

COBalD is currently published only in the major version zero series. The public API is not entirely stable, and may
change between releases. However, API changes are already kept to a minimum and significant API changes SHOULD
relate to an increase of the minor version.

Packages that depend on the COBalD major version zero series should accept compatible release versions for minor
versions. For example, a package requiring at least cobald version 0.12.1 should require cobald ~= 0.12.1 to not
accidentally accept cobald >= 0.13.0.

7.2 Release Process

There is no fixed schedule for releases; a release is manually started whenever significant changes have accumulated or
a bugfix requires a prompt publication.

Note: The following section is only relevant for maintainers of COBalD.

Releases are automatically published to PyPI when a GitHub release is created. Each release should be prepared and
reviewed via a pull request.

1. Create a new branch releases/v<version> and pull request

• Add all to-be-released pull requests to the description

2. Review all changes added by the new release

• Ensure naming, unittests and docs are appropriate

3. Merge new version metadata (e.g. v3.9.2) to repository

• Fix change fragment version via change log ... release 3.9.2

• Adjust and commit __version__ = "3.9.2" in cobald.__about__

• Create a git tag such as git tag -a "v3.9.2" -m "important changes"

45

https://semver.org
https://github.com/MatterMiners/cobald
https://github.com/MatterMiners/cobald
https://www.python.org/dev/peps/pep-0440/#compatible-release

cobald Documentation, Release 0.13.0

Once the pull request has been reviewed and merged, create a new GitHub release.

The cobald is a lightweight framework to balance opportunistic resources: cloud bursting, container orchestration,
allocation scaling and more. Its lightweight model for resources and their composition makes it easy to integrate
custom resources and manage them at a large scale. The idea is as simple as it gets:

Start good things.
Stop bad things.

See also:

The cobald demo is a minimal working toy example for using cobald.

46 Chapter 7. Versioning and Releases

https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository
https://github.com/MaineKuehn/cobald_demo

CHAPTER

EIGHT

QUICK INFO

In the current state, cobald is a research and expert tool targeting administrators and developers. You have to manually
select your resource backends and compose the strategy. Still, the simplicity of cobald should make it accessible for
interested users as well.

Getting COBalD up and running

Have a look at the cobald demo. It provides a minimal working example for running COBalD. The demo
shows you how to install, configure and run your own COBalD instance.

Using COBalD to horizontally scale an HTCondor Pool

The TARDIS project provides backends to several cloud providers. This allows you to orchestrate prebuilt
VM images.

47

https://github.com/MaineKuehn/cobald_demo
https://github.com/tardis-resourcemanager/tardis

cobald Documentation, Release 0.13.0

48 Chapter 8. Quick Info

CHAPTER

NINE

ABOUT

The cobald project originates from research on dynamically providing Cloud resources for analysts of the LHC col-
laborations. It supersedes past work on the ROCED Cloud resource provider, generalising its goal of provisioning
opportunistic resources.

The development of cobald is currently organized by the GridKa and CMS research groups at KIT. We openly encour-
age adoption and contributions outside of KIT, LHC and our current selection of opportunistic resources. Information
on deployment as well as creating and publishing custom plugins will follow.

Please contact us on github or gitter if you want to contribute.

49

https://github.com/roced-scheduler/ROCED
https://github.com/MatterMiners/cobald
https://gitter.im/MatterMiners/community

cobald Documentation, Release 0.13.0

50 Chapter 9. About

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

51

cobald Documentation, Release 0.13.0

52 Chapter 10. Indices and tables

PYTHON MODULE INDEX

c
cobald.composite, 21
cobald.composite.factory, 21
cobald.composite.uniform, 22
cobald.composite.weighted, 22
cobald.controller, 23
cobald.controller.linear, 23
cobald.controller.relative_supply, 23
cobald.controller.stepwise, 24
cobald.controller.switch, 26

d
cobald.daemon, 26
cobald.daemon.config, 26
cobald.daemon.config.mapping, 26
cobald.daemon.config.python, 28
cobald.daemon.config.yaml, 28
cobald.daemon.core, 29
cobald.daemon.core.cli, 29
cobald.daemon.core.config, 29
cobald.daemon.core.logger, 30
cobald.daemon.core.main, 30
cobald.daemon.debug, 35
cobald.daemon.runners, 30
cobald.daemon.runners.asyncio_runner, 30
cobald.daemon.runners.base_runner, 31
cobald.daemon.runners.guard, 32
cobald.daemon.runners.meta_runner, 32
cobald.daemon.runners.service, 33
cobald.daemon.runners.thread_runner, 34
cobald.daemon.runners.trio_runner, 34
cobald.decorator, 35
cobald.decorator.buffer, 35
cobald.decorator.coarser, 36
cobald.decorator.limiter, 36
cobald.decorator.logger, 36
cobald.decorator.standardiser, 37

i
cobald.interfaces, 37

m
cobald.monitor, 40
cobald.monitor.format_json, 40
cobald.monitor.format_line, 40

u
cobald.utility, 41
cobald.utility.primitives, 41

53

cobald Documentation, Release 0.13.0

54 Python Module Index

INDEX

A
accept() (cobald.daemon.runners.service.ServiceRunner

method), 33
aclose() (cobald.daemon.runners.asyncio_runner.AsyncioRunner

method), 30
aclose() (cobald.daemon.runners.base_runner.BaseRunner

method), 31
aclose() (cobald.daemon.runners.thread_runner.ThreadRunner

method), 34
aclose() (cobald.daemon.runners.trio_runner.TrioRunner

method), 34
add() (cobald.controller.stepwise.UnboundStepwise

method), 25
add_constructor_plugins() (in module

cobald.daemon.core.config), 29
adopt() (cobald.daemon.runners.service.ServiceRunner

method), 33
after (cobald.daemon.config.mapping.SectionPlugin

property), 27
allocation (cobald.composite.factory.FactoryPool

property), 21
allocation (cobald.composite.uniform.UniformComposite

property), 22
allocation (cobald.composite.weighted.WeightedComposite

property), 22
allocation (cobald.interfaces.CompositePool prop-

erty), 37
allocation (cobald.interfaces.Pool property), 39
allocation (cobald.interfaces.PoolDecorator prop-

erty), 39
args (cobald.interfaces.Partial attribute), 38
AsyncioRunner (class in

cobald.daemon.runners.asyncio_runner),
30

B
BaseRunner (class in cobald.daemon.runners.base_runner),

31
before (cobald.daemon.config.mapping.SectionPlugin

property), 27
Buffer (class in cobald.decorator.buffer), 35

C
children (cobald.composite.factory.FactoryPool prop-

erty), 21
children (cobald.composite.uniform.UniformComposite

attribute), 22
children (cobald.composite.weighted.WeightedComposite

attribute), 22
children (cobald.interfaces.CompositePool property),

38
cli_run() (in module cobald.daemon.core.main), 30
cobald.composite

module, 21
cobald.composite.factory

module, 21
cobald.composite.uniform

module, 22
cobald.composite.weighted

module, 22
cobald.controller

module, 23
cobald.controller.linear

module, 23
cobald.controller.relative_supply

module, 23
cobald.controller.stepwise

module, 24
cobald.controller.switch

module, 26
cobald.daemon

module, 26
cobald.daemon.config

module, 26
cobald.daemon.config.mapping

module, 26
cobald.daemon.config.python

module, 28
cobald.daemon.config.yaml

module, 28
cobald.daemon.core

module, 29
cobald.daemon.core.cli

module, 29

55

cobald Documentation, Release 0.13.0

cobald.daemon.core.config
module, 29

cobald.daemon.core.logger
module, 30

cobald.daemon.core.main
module, 30

cobald.daemon.debug
module, 35

cobald.daemon.runners
module, 30

cobald.daemon.runners.asyncio_runner
module, 30

cobald.daemon.runners.base_runner
module, 31

cobald.daemon.runners.guard
module, 32

cobald.daemon.runners.meta_runner
module, 32

cobald.daemon.runners.service
module, 33

cobald.daemon.runners.thread_runner
module, 34

cobald.daemon.runners.trio_runner
module, 34

cobald.decorator
module, 35

cobald.decorator.buffer
module, 35

cobald.decorator.coarser
module, 36

cobald.decorator.limiter
module, 36

cobald.decorator.logger
module, 36

cobald.decorator.standardiser
module, 37

cobald.interfaces
module, 37

cobald.monitor
module, 40

cobald.monitor.format_json
module, 40

cobald.monitor.format_line
module, 40

cobald.utility
module, 41

cobald.utility.primitives
module, 41

COBalDLoader (class in cobald.daemon.core.config), 29
CompositePool (class in cobald.interfaces), 37
ConfigurationError, 26
configure_logging() (in module

cobald.daemon.config.mapping), 28

construct() (cobald.daemon.config.mapping.Translator
method), 27

Controller (class in cobald.interfaces), 38
ControlRule (in module cobald.controller.stepwise), 24
create_handler() (in module

cobald.daemon.core.logger), 30
ctor (cobald.interfaces.Partial attribute), 38

D
demand (cobald.composite.factory.FactoryPool prop-

erty), 21
demand (cobald.composite.uniform.UniformComposite

property), 22
demand (cobald.composite.weighted.WeightedComposite

property), 23
demand (cobald.decorator.buffer.Buffer attribute), 36
demand (cobald.decorator.logger.Logger property), 36
demand (cobald.decorator.standardiser.Standardiser

property), 37
demand (cobald.interfaces.CompositePool property), 38
demand (cobald.interfaces.Pool property), 39
demand (cobald.interfaces.PoolDecorator property), 39
DemandSwitch (class in cobald.controller.switch), 26
digest (cobald.daemon.config.mapping.SectionPlugin

attribute), 27

E
enforce() (in module cobald.utility), 41
escape_field() (in module

cobald.monitor.format_line), 41
escape_key() (in module cobald.monitor.format_line),

41
exclusive() (in module

cobald.daemon.runners.guard), 32
execute() (cobald.daemon.runners.service.ServiceRunner

method), 33

F
FactoryPool (class in cobald.composite.factory), 21
flavour (cobald.daemon.runners.asyncio_runner.AsyncioRunner

attribute), 31
flavour (cobald.daemon.runners.base_runner.BaseRunner

attribute), 31
flavour (cobald.daemon.runners.thread_runner.ThreadRunner

attribute), 34
flavour (cobald.daemon.runners.trio_runner.TrioRunner

attribute), 34
format() (cobald.monitor.format_json.JsonFormatter

method), 40
format() (cobald.monitor.format_line.LineProtocolFormatter

method), 40

56 Index

cobald Documentation, Release 0.13.0

G
get_rule() (cobald.controller.stepwise.RangeSelector

method), 24

I
Indistinguishable Resources, 19
initialise_logging() (in module

cobald.daemon.core.logger), 30
InvariantError, 41

J
JsonFormatter (class in cobald.monitor.format_json),

40

K
kwargs (cobald.interfaces.Partial attribute), 38

L
leaf (cobald.interfaces.Partial attribute), 38
line_protocol() (in module

cobald.monitor.format_line), 41
LinearController (class in cobald.controller.linear),

23
LineProtocolFormatter (class in

cobald.monitor.format_line), 40
load() (cobald.daemon.config.mapping.SectionPlugin

class method), 27
load() (in module cobald.daemon.core.config), 29
load_configuration() (in module

cobald.daemon.config.mapping), 28
load_configuration() (in module

cobald.daemon.config.python), 28
load_configuration() (in module

cobald.daemon.config.yaml), 28
load_name() (cobald.daemon.config.mapping.Translator

static method), 27
load_pipeline() (in module

cobald.daemon.core.config), 30
load_section_plugins() (in module

cobald.daemon.core.config), 30
Logger (class in cobald.decorator.logger), 36

M
M (in module cobald.daemon.config.mapping), 27
manage_payloads() (cobald.daemon.runners.asyncio_runner.AsyncioRunner

method), 31
manage_payloads() (cobald.daemon.runners.base_runner.BaseRunner

method), 31
manage_payloads() (cobald.daemon.runners.thread_runner.ThreadRunner

method), 34
manage_payloads() (cobald.daemon.runners.trio_runner.TrioRunner

method), 35

MetaRunner (class in cobald.daemon.runners.meta_runner),
32

module
cobald.composite, 21
cobald.composite.factory, 21
cobald.composite.uniform, 22
cobald.composite.weighted, 22
cobald.controller, 23
cobald.controller.linear, 23
cobald.controller.relative_supply, 23
cobald.controller.stepwise, 24
cobald.controller.switch, 26
cobald.daemon, 26
cobald.daemon.config, 26
cobald.daemon.config.mapping, 26
cobald.daemon.config.python, 28
cobald.daemon.config.yaml, 28
cobald.daemon.core, 29
cobald.daemon.core.cli, 29
cobald.daemon.core.config, 29
cobald.daemon.core.logger, 30
cobald.daemon.core.main, 30
cobald.daemon.debug, 35
cobald.daemon.runners, 30
cobald.daemon.runners.asyncio_runner, 30
cobald.daemon.runners.base_runner, 31
cobald.daemon.runners.guard, 32
cobald.daemon.runners.meta_runner, 32
cobald.daemon.runners.service, 33
cobald.daemon.runners.thread_runner, 34
cobald.daemon.runners.trio_runner, 34
cobald.decorator, 35
cobald.decorator.buffer, 35
cobald.decorator.coarser, 36
cobald.decorator.limiter, 36
cobald.decorator.logger, 36
cobald.decorator.standardiser, 37
cobald.interfaces, 37
cobald.monitor, 40
cobald.monitor.format_json, 40
cobald.monitor.format_line, 40
cobald.utility, 41
cobald.utility.primitives, 41

N
name (cobald.decorator.logger.Logger property), 36
NameRepr (class in cobald.daemon.debug), 35

O
Opportunistic Resources, 19
OrphanedReturn, 32

P
pairwise() (in module cobald.utility), 41

Index 57

cobald Documentation, Release 0.13.0

Partial (class in cobald.interfaces), 38
PipelineTranslator (class in

cobald.daemon.core.config), 29
Pool, 19
Pool (class in cobald.interfaces), 39
PoolDecorator (class in cobald.interfaces), 39
pretty_module() (in module cobald.daemon.debug),

35
pretty_partial() (in module cobald.daemon.debug),

35
pretty_ref() (in module cobald.daemon.debug), 35

R
RangeSelector (class in cobald.controller.stepwise), 24
ready() (cobald.daemon.runners.base_runner.BaseRunner

method), 31
ready() (cobald.daemon.runners.trio_runner.TrioRunner

method), 35
register_payload() (cobald.daemon.runners.asyncio_runner.AsyncioRunner

method), 31
register_payload() (cobald.daemon.runners.base_runner.BaseRunner

method), 31
register_payload() (cobald.daemon.runners.meta_runner.MetaRunner

method), 32
register_payload() (cobald.daemon.runners.thread_runner.ThreadRunner

method), 34
register_payload() (cobald.daemon.runners.trio_runner.TrioRunner

method), 35
regulate() (cobald.controller.linear.LinearController

method), 23
regulate() (cobald.controller.relative_supply.RelativeSupplyController

method), 23
regulate() (cobald.controller.switch.DemandSwitch

method), 26
RelativeSupplyController (class in

cobald.controller.relative_supply), 23
required (cobald.daemon.config.mapping.SectionPlugin

property), 27
requirements (cobald.daemon.config.mapping.SectionPlugin

attribute), 27
run() (cobald.composite.factory.FactoryPool method),

22
run() (cobald.controller.linear.LinearController

method), 23
run() (cobald.controller.relative_supply.RelativeSupplyController

method), 24
run() (cobald.controller.stepwise.Stepwise method), 24
run() (cobald.controller.switch.DemandSwitch method),

26
run() (cobald.daemon.runners.base_runner.BaseRunner

method), 31
run() (cobald.daemon.runners.meta_runner.MetaRunner

method), 32
run() (cobald.decorator.buffer.Buffer method), 36

run() (in module cobald.daemon.core.main), 30
run_payload() (cobald.daemon.runners.asyncio_runner.AsyncioRunner

method), 31
run_payload() (cobald.daemon.runners.base_runner.BaseRunner

method), 32
run_payload() (cobald.daemon.runners.meta_runner.MetaRunner

method), 32
run_payload() (cobald.daemon.runners.thread_runner.ThreadRunner

method), 34
run_payload() (cobald.daemon.runners.trio_runner.TrioRunner

method), 35
runner_types (cobald.daemon.runners.meta_runner.MetaRunner

attribute), 32
runners (cobald.daemon.runners.meta_runner.MetaRunner

property), 33
running (cobald.daemon.runners.service.ServiceUnit

property), 33
runtime (in module cobald.daemon), 26

S
s() (cobald.controller.stepwise.UnboundStepwise

method), 25
s() (cobald.interfaces.Controller class method), 38
s() (cobald.interfaces.Pool class method), 39
s() (cobald.interfaces.PoolDecorator class method), 39
section (cobald.daemon.config.mapping.SectionPlugin

attribute), 27
SectionPlugin (class in

cobald.daemon.config.mapping), 27
service() (in module cobald.daemon), 26
service() (in module cobald.daemon.runners.service),

33
ServiceRunner (class in

cobald.daemon.runners.service), 33
ServiceUnit (class in cobald.daemon.runners.service),

33
shutdown() (cobald.daemon.runners.service.ServiceRunner

method), 33
Standardiser (class in cobald.decorator.standardiser),

37
start() (cobald.daemon.runners.service.ServiceUnit

method), 33
Stepwise (class in cobald.controller.stepwise), 24
stepwise (in module cobald.controller.stepwise), 26
stop() (cobald.daemon.runners.base_runner.BaseRunner

method), 32
stop() (cobald.daemon.runners.meta_runner.MetaRunner

method), 33
supply (cobald.composite.factory.FactoryPool prop-

erty), 22
supply (cobald.composite.uniform.UniformComposite

property), 22
supply (cobald.composite.weighted.WeightedComposite

property), 23

58 Index

cobald Documentation, Release 0.13.0

supply (cobald.interfaces.CompositePool property), 38
supply (cobald.interfaces.Pool property), 39
supply (cobald.interfaces.PoolDecorator property), 39

T
ThreadRunner (class in

cobald.daemon.runners.thread_runner),
34

translate_hierarchy()
(cobald.daemon.config.mapping.Translator
method), 28

translate_hierarchy()
(cobald.daemon.core.config.PipelineTranslator
method), 29

Translator (class in cobald.daemon.config.mapping),
27

TrioRunner (class in cobald.daemon.runners.trio_runner),
34

U
UnboundStepwise (class in cobald.controller.stepwise),

24
UniformComposite (class in

cobald.composite.uniform), 22
units() (cobald.daemon.runners.service.ServiceUnit

class method), 33
utilisation (cobald.composite.factory.FactoryPool

property), 22
utilisation (cobald.composite.uniform.UniformComposite

property), 22
utilisation (cobald.composite.weighted.WeightedComposite

property), 23
utilisation (cobald.interfaces.CompositePool prop-

erty), 38
utilisation (cobald.interfaces.Pool property), 39
utilisation (cobald.interfaces.PoolDecorator prop-

erty), 39

W
WeightedComposite (class in

cobald.composite.weighted), 22

Y
yaml_constructor() (in module

cobald.daemon.config.yaml), 28

Index 59

	Resource and Control Model
	Pool and Control Model
	Composition and Decoration
	Detail Descriptions
	Resource Abstraction via Pools
	Supply and Demand
	Allocation versus Utilisation

	Transparent Demand Control
	Composing Pools of Resources

	Daemon Infrastructure and Facilities
	Component Configuration
	The YAML Interface
	Object References

	Python Code Inclusion

	Standard Logging Facilities
	Logging Channels
	The Monitor Channel

	Concurrent Execution
	Registering Background Services
	Task Execution and Abortion
	Triggering Background Tasks
	Available Flavours

	systemd Configs

	Custom Controllers, Pools and Extensions
	Custom Pool Semantics
	Behaviour of Pool Implementations
	Common Utilisation and Allocation scenarios

	Using and Distributing Extensions
	Configuration Files
	Python Packages
	The setup.py File
	YAML Configuration Plugins
	YAML Tag Plugins
	Section Plugins

	The cobald Namespace

	Glossary of Terms
	cobald
	cobald namespace
	Subpackages
	cobald.composite package
	Submodules
	cobald.composite.factory module
	cobald.composite.uniform module
	cobald.composite.weighted module

	cobald.controller package
	Submodules
	cobald.controller.linear module
	cobald.controller.relative_supply module
	cobald.controller.stepwise module
	cobald.controller.switch module

	cobald.daemon package
	Subpackages
	cobald.daemon.config package
	Submodules
	cobald.daemon.config.mapping module
	cobald.daemon.config.python module
	cobald.daemon.config.yaml module
	cobald.daemon.core package
	Submodules
	cobald.daemon.core.cli module
	cobald.daemon.core.config module
	cobald.daemon.core.logger module
	cobald.daemon.core.main module
	cobald.daemon.runners package
	Submodules
	cobald.daemon.runners.async_tools module
	cobald.daemon.runners.asyncio_runner module
	cobald.daemon.runners.asyncio_watcher module
	cobald.daemon.runners.base_runner module
	cobald.daemon.runners.guard module
	cobald.daemon.runners.meta_runner module
	cobald.daemon.runners.service module
	cobald.daemon.runners.thread_runner module
	cobald.daemon.runners.trio_runner module

	Submodules
	cobald.daemon.debug module

	cobald.decorator package
	Submodules
	cobald.decorator.buffer module
	cobald.decorator.coarser module
	cobald.decorator.limiter module
	cobald.decorator.logger module
	cobald.decorator.standardiser module

	cobald.interfaces package
	cobald.monitor package
	Submodules
	cobald.monitor.format_json module
	cobald.monitor.format_line module

	cobald.utility package
	Submodules
	cobald.utility.primitives module

	ChangeLog
	0.13 Series
	Version [0.13.0] - 2022-08-16

	0.12 Series
	Version [0.12.3] - 2021-10-29
	Version [0.12.2] - 2021-09-15
	Version [0.12.1] - 2020-04-15
	Version [0.12.0] - 2020-02-26

	0.11 Series
	Version [0.11.0] - 2020-02-24

	0.10 Series
	Version [0.10.0] - 2019-09-03

	Versioning and Releases
	Versioning and API stability
	Release Process

	Quick Info
	About
	Indices and tables
	Python Module Index
	Index

