

COBalD – the Opportunistic Balancing Daemon

[image: Documentation Status]
 [http://cobald.readthedocs.io/en/latest/?badge=latest][image: Test Status]
 [https://travis-ci.org/MatterMiners/cobald][image: Test Coverage]
 [https://codecov.io/gh/MatterMiners/cobald][image: Available on PyPI]
 [https://pypi.python.org/pypi/cobald/][image: License]
 [https://github.com/MatterMiners/cobald/blob/master/LICENSE][image: Zenodo DOI]
 [https://zenodo.org/badge/latestdoi/129873843]

[image: Cobald Logo]
The cobald is a lightweight framework to balance opportunistic resources:
cloud bursting, container orchestration, allocation scaling and more.
Its lightweight model for resources and their composition
makes it easy to integrate custom resources and manage them at a large scale.
The idea is as simple as it gets:

Start good things.

Stop bad things.

See also

The cobald demo [https://github.com/MaineKuehn/cobald_demo] is a minimal working toy example for using cobald.

Quick Info

In the current state, cobald is a research and expert tool targeting administrators and developers.
You have to manually select your resource backends and compose the strategy.
Still, the simplicity of cobald should make it accessible for interested users as well.

Getting COBalD up and running

Have a look at the cobald demo [https://github.com/MaineKuehn/cobald_demo].
It provides a minimal working example for running COBalD.
The demo shows you how to install, configure and run your own COBalD instance.

Using COBalD to horizontally scale an HTCondor Pool

The TARDIS [https://github.com/tardis-resourcemanager/tardis] project provides backends to several cloud providers.
This allows you to orchestrate prebuilt VM images.

About

The cobald project originates from research on dynamically providing
Cloud resources for analysts of the LHC collaborations.
It supersedes past work on the ROCED [https://github.com/roced-scheduler/ROCED] Cloud resource provider,
generalising its goal of provisioning opportunistic resources.

The development of cobald is currently organized by the GridKa and CMS research groups at KIT.
We openly encourage adoption and contributions outside of KIT, LHC and our current selection of opportunistic resources.
Information on deployment as well as creating and publishing custom plugins will follow.

Please contact us on github [https://github.com/MatterMiners/cobald] or gitter [https://gitter.im/MatterMiners/community] if you want to contribute.

Indices and tables

	Index

	Module Index

	Search Page

Resource and Control Model

The goal of cobald is to simplify the provisioning of opportunistic resources.
This is achieved with a composable model to define, aggregate, generalise and control resources.
The cobald.interfaces codify this into a handful of primitive building blocks.

Pool and Control Model

The cobald model for controlling resources is built on four simple types of primitives.
Two fundamental primitives represent the actual resources and the provisioning strategy:

	The adapter handling concrete resources is a Pool.
Each Pool merely communicates the total volume of resources and their overall fitness.

	The decision to add or remove resources is made by a Controller.
Each Controller only inspects the fitness of its Pools and adjusts their desired volume.

These two primitives are sufficient for direct control of simple resources.
It is often feasible to control several pools of resources separately.

[image: digraph graphname { graph [rankdir=LR, splines=lines, bgcolor="transparent"] labelloc = "b" controla, controlb [label=Controller] poola, poolb [label=Pool] subgraph cluster_0 { controla -> poola pencolor=transparent label = "Resource 1" } subgraph cluster_1 { controlb -> poolb pencolor=transparent label = "Resource 2" } poola -> controlb [style=invis] }]

Composition and Decoration

For complex tasks it may be necessary to combine resources or change their interaction and appearance.

	The details of managing resources are encoded by Decorators.
Each Decorator translates between the specific Pools
and the generic Controllers.

	The combination of several resources is made by CompositePools.
Each CompositePool handles several Pools, but gives the outward appearance of a single Pool.

All four primitives can be combined to express even complex resource and control scenarios.
However, there is always a Controller on one end
and a Pool on the other.
Since individual primitives can be combined and reused,
new use cases require only a minimum of new implementations.

[image: digraph graphname { graph [rankdir=LR, splines=lines, bgcolor="transparent"] labelloc = "b" controller [label=Controller] decoa, decob, decoc [label=Decorator] composite [label=Composite] poola, poolb [label=Pool] controller -> decoa -> composite composite -> decob -> poola composite -> decoc -> poolb pencolor=transparent label = "Resource 1 and 2" }]

Detail Descriptions

	Resource Abstraction via Pools

	Transparent Demand Control

	Composing Pools of Resources

Resource Abstraction via Pools

The fundamental abstraction for resources is the Pool:
a representation for a number of indistinguishable resources.

As far as cobald is concerned, it is inconsequential which specific resources make up a pool.
This allows each Pool to implement its own strategy for managing resources.
For example, a Pool providing virtual machines
may silently spawn a new machine to replace another.

The purpose of a Pool is just to provide resources,
not use them for any specific task.
For example, the aforementioned VM may integrate into a Batch System which provides the VM with work.
What matters to cobald is only whether resources match their underlying usage.

Supply and Demand

Each Pool effectively provides only one type of resources 1.
The only adjustment possible from the outside is how many resources are provided.
This is expressed as supply
and demand:

	supply [r/o]
	The amount of resources a pool currently provides.

	demand [r/w]
	The amount of resources a pool is expected to provide.

Note that demand is not derived by a Pool,
but should be adjusted from the outside.
The task of a Pool is only to adjust its supply to match demand.

Allocation versus Utilisation

While a Pool does not calculate the demand for its resources,
it has to track and expose their usage.
This is expressed as two attributes that reflect how much and how well resources are used:

	allocation [r/o]
	Fraction of the supplied resources which are allocated for usage

	utilisation [r/o]
	Fraction of the supplied resources which are actively used

	1

	What constitutes a single “type” depends on the intended use of the resource.
For example, it might be a generic “bytes of storage space”
or a specific “consecutive bytes of HDD at 10 ms access time and 2500000 hrs MTBF”.

Transparent Demand Control

[image: digraph graphname { graph [rankdir=LR, splines=lines, bgcolor="transparent"] controller [label=Controller] poola [label=Pool] controller -> poola }]

Composing Pools of Resources

Daemon Infrastructure and Facilities

The cobald.daemon provides the infrastructure to deploy one or more
resource control pipelines.
Any component integrated into this infrastructure can be configured and controlled in the same fashion.

Subsystems:

	Component Configuration

	Standard Logging Facilities

	Concurrent Execution

	systemd Configs

Component Configuration

Configuration of the cobald.daemon is performed at startup via one of two methods:
a YAML file or Python code.
While the former is more structured and easier to verify, the latter allows for greater freedom.

The configuration file is the only positional argument when launching the cobald.daemon.
The file extension determines the type of configuration interface to use -
.py for Python files and .yaml for YAML files.

$ python3 -m cobald.daemon /etc/cobald/config.yaml
$ python3 -m cobald.daemon /etc/cobald/config.py

The YAML Interface

The top level of a YAML configuration file is a mapping with two sections:
the pipeline section setting up a pool control pipeline,
and the logging section setting up the logging facilities.
The logging section is optional and follows the standard
configuration dictionary schema [https://docs.python.org/3/library/logging.config.html#configuration-dictionary-schema]. 1

The pipeline section must contain a sequence of
Controllers,
Decorators
and Pools.
Each pipeline is constructed in reverse order:
the last element should be a Pool
and is constructed first,
then recursively passed to its predecessor for construction.

pool becomes the target of the controller
pipeline:
 - !LinearController
 low_utilisation: 0.9
 high_utilisation: 1.1
 - !CpuPool
 interval: 1

Object References

YAML configurations support !! tag and ! constructor syntax.
These allow to use arbitrary Python objects and registered plugins, respectively.
Both support keyword and positional arguments.

generic python tag for arbitrary objects
!!python/object:cobald.controller.linear.LinearController {low_utilisation: 0.9}
constructor tag for registered plugin
!LinearController
low_utilisation: 0.9

New in version 0.9.3.

Note

The YAML configuration is read using yaml.SafeLoader to avoid arbitrary code execution.
Objects must be marked as safe for loading,
either as COBalD plugins
or using PyYAML [https://pyyaml.org/wiki/PyYAMLDocumentation] directly.

A legacy format using explicit type references is available, but discouraged.
This uses an invocation mechanism that can use arbitrary callables to construct objects:
each mapping with a __type__ key is invoked with its items as keyword arguments,
and the optional __args__ as positional arguments.

pipeline:
 # same as ``package.module.callable(a, b, keyword1="one", keyword2="two")
 - __type__: package.module.callable
 __args__:
 - a
 - b
 keyword1: one
 keyword2: two

Deprecated since version 0.9.3: Use YAML tags and constructors instead.

Python Code Inclusion

Python configuration files are loaded like regular modules.
This allows to define arbitrary types and functions, and directly chain components or configure logging.
At least one pipeline of Controllers,
Decorators
and Pools should be instantiated.

from cobald.controller.linear import LinearController

from cobald_demo.cpu_pool import CpuPool
from cobald_demo.draw_line import DrawLineHook

pipeline = LinearController.s(
 low_utilisation=0.9, high_allocation=1.1
) >> CpuPool()

As regular modules, Python configurations must explicitly import the components they use.
In addition, everything not bound to a name will be garbage collected.
This allows configurations to use temporary objects, e.g. reading from files or sockets,
but means persistent objects (such as a pipeline) must be bound to a name.

	1

	YAML configurations allow for additional sections to configure plugins.
Additional sections are logged to the
"cobald.runtime.config" channel.

Standard Logging Facilities

The cobald.daemon provides several separate logging [https://docs.python.org/3/library/logging.html#module-logging] channels.
Each exposes information from a different view and for a different audience.
Both core components and plugins should hook into these channels to supply appropriate information.

Logging Channels

Channels are separated by a hierarchical logging [https://docs.python.org/3/library/logging.html#module-logging] name.

	"cobald.runtime"
	Diagnostic information on the health of the daemon and its abstractions.
This includes resources initialised (e.g. databases or modules),
and any failures that may affect daemon stability (e.g. unavailable resources).

	"cobald.control"
	Information specific to the pool control model.
This includes decisions made and statistics used for this purpose.

	"cobald.monitor"
	Monitoring information for automated processing.

Log providers hook into channels by creating a sub-logger.
For example, the daemon core uses the "cobald.runtime.daemon" logger for diagnostics.

The Monitor Channel

In contrast to other channels, the "cobald.monitor" channel provides structured data.
This data is suitable for data transfer formats such as JSON or telegraf.
Each entry consists of an identifier and a dictionary of data:

get a separate logger in the 'cobald.monitor' channel
logger = logging.getLogger('cobald.monitor.wheatherapi')
`message` forms the identifier, `args` contains data
logger.info('forecast', {'temperature': 298, 'humidity': 0.45})

Note that the message is not formatted with the content of args`
The specific output format is defined by the logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter] used for a logging.Handler [https://docs.python.org/3/library/logging.html#logging.Handler].

	LineProtocolFormatter
	Formatter for the InfluxDB Line Protocol [https://docs.influxdata.com/influxdb/v1.5/write_protocols/line_protocol_tutorial/], as used by InfluxDB and Telegraf.
This is a structured format, without access to the underlying report metadata.
The report message always acts as the measurement key.

Supports adding default data as tags, e.g. as LineProtocolFormatter({'latitude': 49, 'longitude': 8}).

forecast,latitude=49,longitude=8 humidity=0.45,temperature=298

	cobald.monitor.format_json.JsonFormatter
	Formatter for the JSON format.
This is an unstructured format, with optional access to the underlying report metadata.

Supports adding default data, e.g. as JsonFormatter({'latitude': 49, 'longitude': 8}).

{"latitude": 49, "longitude": 8, "temperature": 298, "humidity": 0.45, "message": "forecast"}

Concurrent Execution

The cobald.daemon provides a dedicated concurrent execution environment.
This combines several execution mechanisms into a single, consistent runtime.
As a result, the daemon can consistently track the lifetime of tasks and react to failures.

The purpose of this is for components to execute concurrently,
while ensuring each component is in a valid state.
In this regard, the execution environment is similar to an init service such as systemd.

Registering Background Services

The primary entry point to the runtime is defining services:
the main threads of service instances are automatically started, tracked and handled by the cobald.daemon.
This allows services to update information, manage resources and react to changing conditions.

A service is defined by applying the service() decorator to a class.
This automatically schedules the run method of any instances for execution as a background task.

@service(flavour=threading)
class MyService(object):
 # run method of any instances is executed in a thread once the daemon starts
 def run():
 ...

Task Execution and Abortion

Any background task is adopted by the daemon runtime.
Adopted tasks are executed separately for each flavour;
this means that async code of the same flavour is never run in parallel.
However, tasks of non-async flavour, such as threading, and different flavours can be run in parallel.

Any adopted tasks are considered self-contained by the runtime.
Most importantly, they have no parent that can receive return values or exceptions.

Warning

Any unhandled return values and exceptions are considered an error.
The daemon automatically terminates in this case.

On termination, the daemon aborts all remaining background tasks.
Whether this is graceful or not depends on the flavour of each task.
In general, coroutines are gracefully terminated whereas subroutines are not.

Triggering Background Tasks

The execution environment is exposed as cobald.daemon.runtime,
an instance of ServiceRunner.
Via this entry point, new tasks may be launched after the daemon has started.

	
runtime.adopt(payload, *args, flavour, **kwargs)

	Run a payload of the appropriate flavour in the background.
The caller is not blocked, but cannot receive any return value or exceptions.

Note

It is a fatal error if payload produces any value or exception.

	
runtime.execute(payload, *args, flavour, **kwargs)

	Run a payload of the appropriate flavour until completion.
The caller is blocked during execution, and receives any return value or exceptions.

If *args or **kwargs are provided, the payload is run as payload(*args, **kwargs).

Available Flavours

Flavours are identified by the underlying module.
The following types are currently supported:

asnycio

Coroutines implemented with the asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] library.
Payloads are gracefully cancelled.

trio

Coroutines implemented with the trio [https://trio.readthedocs.io/en/stable/reference-core.html#module-trio] library.
Payloads are gracefully cancelled.

threading

Subroutines implemented with the threading [https://docs.python.org/3/library/threading.html#module-threading] library.
Payloads run as daemons and ungracefully terminated.

systemd Configs

You can run cobald as a system service.
We provide systemd configs for multiple cobald instances run as services.
You can manage several instances which are identified with a systemd instance name.

Create a file named cobald@.service in the /usr/lib/systemd/system directory.

An example of a systemd config file:

[Unit]
Description=COBalD - the Opportunistic Balancing Daemon for %I
Documentation=https://cobald.readthedocs.io
After=network.target
Wants=network-online.target
After=network-online.target

[Install]
RequiredBy=multi-user.target

[Service]
Type=simple
ExecStart=/usr/bin/python3 -m cobald.daemon /etc/cobald/%i.py

In this example, the configs for the different COBalD instances are located at /etc/cobald/instance-name.py.
cobald can handle .py and .yaml configuration files.
Please ensure that the chosen python interpreter has cobald installed!
We recommend to use a virtualenv.
By using a virtualenv you have to set the ExecStart to ExecStart={{ virtualenv }}/bin/python -m cobald.daemon /etc/cobald/%i.yaml.

After you created or changed the file you need to run:

$ systemctl daemon-reload

Now you can manage the cobald instance which loads the /etc/cobald/instance-name.py config file.

	start one instance of cobald

$ systemctl start cobald@instance-name

	stop the instance of cobald

$ systemctl stop cobald@instance-name

	report the current status of the cobald instance

$ systemctl status cobald@instance-name

	enable cobald instance start at boot time

$ systemctl enable cobald@instance-name

Custom Controllers, Pools and Extensions

The cobald.daemon is capable of loading any modules and code importable
by its Python interpreter.
In addition, plugins can be registered for fast access in configuration files.
Extensions are integrated as classes that satisfy the Controller,
Pool or Decorator interfaces.
Internally, extensions can be organized and implemented as required.

Contents:

	Custom Pool Semantics

	Using and Distributing Extensions

Custom Pool Semantics

Adding new types of resources requires writing a new cobald.interfaces.Pool implementation.
While adherence to the interface ensures compatibility,
a custom Pool must also conform to some constraints for consistency.

Behaviour of Pool Implementations

The conventions on Pools are minimal, but their prevalence makes following them critical.
Basically, the conventions are implied by the semantics of a Pool’s properties.

	Responsiveness of Properties
	The properties supply, demand,
allocation, and utilisation
should respond similar to regular attributes.
Getting and setting properties should return quickly -
avoid lengthy computations, queries and interactions with external processes.
Never use locking for arbitrary times.

If you wish to represent external or complex state,
buffer values and react to them or update them at regular intervals.

	Ordering of Utilisation and Allocation
	The model of allocation and utilisation
assumes that only allocated resources can be utilised.
As such, allocation
should generally be greater than
utilisation.
Note that this is a loose assumption that is not enforced.
Deviations due to precision or timing should not have a significant impact.

If you have use-cases where this assumption is not applicable, such as overbooking,
you may want to write your own cobald.interfaces.Controller.

Common Utilisation and Allocation scenarios

Depending on the actual resources to manage, it might not be possible to accurately track
allocation or utilisation.
Furthermore, at times it is not desirable to use meaningless accuracy.
This is why allocation and utilisation
are purposely unrestrictive.
The following illustrates several scenarios how to define the two consistently.

Multi-Dimensional Allocations

[image: ../../_images/pool_allocation_cpu_ram.png]

Allocation of CPU and RAM

Using and Distributing Extensions

Extensions for cobald are regular Python code accessible to the interpreter.
For specific problems, extensions can be defined directly in a Python configuration file.
General purpose and reusable code should be made available as a Python package.
This ensures proper installation and dependency management,
and allows quick access from YAML configuration files.

Configuration Files

Using Python configuration files allows to define arbitrary
objects, functions and helpers.
This is ideal for minor modifications of existing objects and
experimental extensions.
Simply add new definitions to the configuration before using them:

#/etc/cobald/my_demo.py
from cobald.interface import Controller

from cobald_demo.cpu_pool import CpuPool
from cobald_demo.draw_line import DrawLineHook

custom Controller implementation
class StaticController(Controller):
 """Controller that sets demand to a fixed value"""
 def __init__(self, target, demand):
 super().__init__(target)
 self.target.demand = demand

use custom Controller
pipeline = StaticController.s(demand=50) >> DrawLineHook.s() >> CpuPool(interval=1)

Configuration files are easy to use and modify, but impractical for reusable extensions.

Python Packages

For generic extensions, Python packages simplify distribution and reuse.
Packages are individual .py files or folders containing several .py files;
in addition, packages contain metadata for dependency management and installation.

my_controller.py
from cobald.interfaces import Controller

class StaticController(Controller):
 def __init__(self, target, demand):
 super().__init__(target)
 self.target.demand = demand

Packages can be temporarily accessed via PYTHONPATH or permanently installed.
Once available, packages can be imported and used in any configuration.

#/etc/cobald/my_demo.py
from my_controller import StaticController

from cobald_demo.cpu_pool import CpuPool
from cobald_demo.draw_line import DrawLineHook

use custom Controller from package
pipeline = StaticController.s(demand=50) >> DrawLineHook.s() >> CpuPool(interval=1)

Packages require additional effort to create and use, but are easier to automate and maintain.
As with any package, authors should follow the PyPA [https://www.pypa.io/en/latest/] recommendations for python packaging [https://packaging.python.org].

The setup.py File

The setup.py file contains the metadata to install, update and manage a package.
For extension packages, it should contain a dependency on cobald and the
keywords should mention cobald for findability.

setup.py

setup(
 # dependency on `cobald` core package
 install_requires=[
 'cobald',
 ...
],
 # searchable on pypi index
 keywords='... cobald',
 ...
)

YAML Configuration Plugins

Packages may define two different types of plugins for the
YAML configuration format:
readers for entire configuration sections, and
tags for individual configuration elements.

Note

YAML Plugins only apply to the YAML configuration format.
They have no effect if the Python configuration format is used.

YAML Tag Plugins

Tag Plugins allow to execute extensions as configuration elements
by using YAML tag syntax, such as !MyExtension.
Extensions are treated as callables and
receive arguments depending on the type of their element:
mappings are used as keyword arguments,
and
sequences are used as positional arguments.

resolves to ExtensionClass(foo=2, bar="Hello World!")
- !MyExtension
 foo: 2
 bar: "Hello World!"
resolves to ExtensionClass(2, "Hello World!")
- !MyExtension
 - 2
 - "Hello World!"

A packages can declare any callable as a Tag Plugin
by adding it to the cobald.config.yaml_constructors group of entry_points;
the name of the entry is converted to a Tag when evaluating the configuration.
For example, a plugin class ExtensionClass defined in mypackage.mymodule
can be made available as MyExtension in this way:

setup(
 ...,
 entry_points={
 'cobald.config.yaml_constructors': [
 'MyExtension = mypackage.mymodule:ExtensionClass',
],
 },
 ...
)

Hint

Tag Plugins are primarily intended to add custom
Controller, Decorator,
and Pool types for a COBalD pipeline.
If a plugin implements a s() method,
this is used automatically.

Note

If a plugin requires eager loading of its YAML configuration,
decorate it with cobald.daemon.plugins.yaml_tag().

New in version 0.12.3: The cobald.daemon.plugins.yaml_tag() and eager evaluation.

Section Plugins

Section Plugins allow to accept and digest new configuration sections.
In addition, the cobald daemon verify that there are no unexpected
configuration sections to protect against typos and misconfiguration.
Extensions are entire top-level sections in the YAML file,
which are passed to the plugin after parsing and tag evaluation:

standard cobald pipeline
pipeline:
 - !DummyPool
passes [{'some_key': 'a', 'more_key': 'b'}, 'foobar', TagPlugin()]
to the Plugin requesting 'my_plugin'
my_plugin:
 - some_key: a
 more_key: b
 - foobar
 - !TagPlugin

A packages can declare any callable as a Section Plugin
by adding it to the cobald.config.sections group of entry_points;
the name of the entry is the top-level name of the configuration section.
For example, a plugin callable ConfigReader defined in mypackage.mymodule
can request the configuration section my_plugin in this way:

setup(
 ...,
 entry_points={
 'cobald.config.sections': [
 'my_plugin = mypackage.mymodule:ConfigReader',
],
 },
 ...
)

Note

If a plugin must always be covered by configuration,
or should run before or after another plugin,
decorate it with cobald.daemon.plugins.constraints().

New in version 0.12: The cobald.daemon.plugins.constraints() and dependency resolution.

The cobald Namespace

The top-level cobald package itself is a namespace package [https://packaging.python.org/guides/packaging-namespace-packages/#native-namespace-packages].
This allows the COBalD developers to add, remove or split sub-packages.
In order to not conflict with the core development,
do not add your own packages to the cobald namespace.

Glossary of Terms

	Opportunistic Resources
	Any resources available for but not dedicated to a specific task.
This includes resources which are acquired temporarily, but not owned permanently.
Strongly put, any resource borrowed for usage outside of its dedicated purpose.
This includes performing a non-dedicated task instead of idling in the absence of a dedicated task.

	Indistinguishable Resources
	Any resources that are equally suited to fulfill the same tasks.
It is irrelevant which specific resource serves which task.
This does not imply strict equality, merely that any differences are inconsequential or negligible.

	Pool
	A collection of resources which are indistinguishable.

cobald

	cobald namespace
	Subpackages
	cobald.composite package
	Submodules

	cobald.controller package
	Submodules

	cobald.daemon package
	Subpackages

	Submodules

	cobald.decorator package
	Submodules

	cobald.interfaces package

	cobald.monitor package
	Submodules

	cobald.utility package
	Submodules

cobald namespace

Subpackages

	cobald.composite package
	Submodules
	cobald.composite.factory module

	cobald.composite.uniform module

	cobald.composite.weighted module

	cobald.controller package
	Submodules
	cobald.controller.linear module

	cobald.controller.relative_supply module

	cobald.controller.stepwise module

	cobald.controller.switch module

	cobald.daemon package
	Subpackages
	cobald.daemon.config package
	Submodules
	cobald.daemon.config.mapping module

	cobald.daemon.config.python module

	cobald.daemon.config.yaml module

	cobald.daemon.core package
	Submodules
	cobald.daemon.core.cli module

	cobald.daemon.core.config module

	cobald.daemon.core.logger module

	cobald.daemon.core.main module

	cobald.daemon.runners package
	Submodules
	cobald.daemon.runners.async_tools module

	cobald.daemon.runners.asyncio_runner module

	cobald.daemon.runners.asyncio_watcher module

	cobald.daemon.runners.base_runner module

	cobald.daemon.runners.guard module

	cobald.daemon.runners.meta_runner module

	cobald.daemon.runners.service module

	cobald.daemon.runners.thread_runner module

	cobald.daemon.runners.trio_runner module

	Submodules
	cobald.daemon.debug module

	cobald.decorator package
	Submodules
	cobald.decorator.buffer module

	cobald.decorator.coarser module

	cobald.decorator.limiter module

	cobald.decorator.logger module

	cobald.decorator.standardiser module

	cobald.interfaces package

	cobald.monitor package
	Submodules
	cobald.monitor.format_json module

	cobald.monitor.format_line module

	cobald.utility package
	Submodules
	cobald.utility.primitives module

cobald.composite package

Submodules

	cobald.composite.factory module

	cobald.composite.uniform module

	cobald.composite.weighted module

cobald.composite.factory module

	
class cobald.composite.factory.FactoryPool(*args, **kwargs)

	Bases: CompositePool

Composition that adds and removes pools to satisfy demand

	Parameters

	
	factory – a callable that produces a new Pool

	interval – how often to adjust the number of children

Adjustment uses two extensions that children must respond to adequately:

	When spawned via factory(), children shall already be
set to their expected demand.

	When disabled via demand=0, children shall shut down
and free any resources and tasks.

Once spawned, children are free to adjust their demand if required.
A child may disable itself permanently by setting its own demand = 0.
The FactoryPool inspects the demand for all its children
before spawning or disabling any children.

Any child which satisfies supply > 0 or demand > 0 is considered
active and contributes to the FactoryPool
supply, demand, allocation, and utilisation.
The FactoryPool makes no assumption about the validity or fitness
of active children.
It is the responsibility of children to report their status accordingly.
For example, if a child shuts down and does not allocate its supply further,
it should scale its reported allocation accordingly.

	
property allocation

	Fraction of the provided resources which are assigned for usage

	
property children

	The individual resource providers making up this pool

	
property demand

	The volume of resources to be provided by this pool

	
async run()

	Service entry point

	
property supply

	The volume of resources that is provided by this pool

	
property utilisation

	Fraction of the provided resources which are actively used

cobald.composite.uniform module

	
class cobald.composite.uniform.UniformComposite(*children: Pool)

	Bases: CompositePool

Uniform composition of several pools, with each pool weighted the same

	
property allocation

	Fraction of the provided resources which are assigned for usage

	
children = []

	

	
property demand

	The volume of resources to be provided by this pool

	
property supply

	The volume of resources that is provided by this pool

	
property utilisation

	Fraction of the provided resources which are actively used

cobald.composite.weighted module

	
class cobald.composite.weighted.WeightedComposite(*children: Pool, weight: typing_extensions.Literal[supply, utilisation, allocation] = 'supply')

	Bases: CompositePool

Composition of pools weighted by their current state

The aggregation of children’s demand,
utilisation and allocation
is weighted by each child’s weight.
Children can be weighted by their supply,
utilisation or allocation.
Note that weighting the demand only applies to
distributing it to children; the composite’s demand
is always exactly as set by its controller.

If the total weight is 0, the following fallback applies:

	demand is applied uniformly, and

	utilisation and allocation are assumed
1 if there are no children, 0 otherwise.

The latter rule expresses that the total fitness of a Pool is 0 either if the
fitness of all its children is 0, or there are no children.

	
property allocation

	Fraction of the provided resources which are assigned for usage

	
children = []

	

	
property demand

	The volume of resources to be provided by this pool

	
property supply

	The volume of resources that is provided by this pool

	
property utilisation

	Fraction of the provided resources which are actively used

cobald.controller package

Submodules

	cobald.controller.linear module

	cobald.controller.relative_supply module

	cobald.controller.stepwise module

	cobald.controller.switch module

cobald.controller.linear module

	
class cobald.controller.linear.LinearController(*args, **kwargs)

	Bases: Controller

Controller that linearly increases or decreases demand

	Parameters

	
	target – the pool to manage

	low_utilisation – pool utilisation below which resources are decreased

	high_allocation – pool allocation above which resources are increased

	rate – maximum change of demand in resources per second

	interval – interval between adjustments in seconds

	
regulate(interval)

	

	
async run()

	Service entry point

cobald.controller.relative_supply module

	
class cobald.controller.relative_supply.RelativeSupplyController(*args, **kwargs)

	Bases: Controller

Controller that adjusts demand relative to supply

	Parameters

	
	target – the pool to manage

	low_utilisation – pool utilisation below which resources are decreased

	high_allocation – pool allocation above which resources are increased

	low_scale – scale of target.supply when decreasing resources

	high_scale – scale of target.supply when increasing resources

	interval – interval between adjustments in seconds

	
regulate(interval)

	

	
async run()

	Service entry point

cobald.controller.stepwise module

	
cobald.controller.stepwise.ControlRule

	Individual control rule for a pool on a given interval

When a rule for a Stepwise is invoked, it receives
the pool to manage and the interval elapsed since the
last modification.
It should either return the new demand, or
None to indicate no change; the latter can also
mean that the function does not hit a return statement.

	
\ rule(pool: Pool, interval: float) -> Optional[float]

	

Note that a rule should not modify the pool directly.

alias of Callable[[Pool, float [https://docs.python.org/3/library/functions.html#float]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]]

	
class cobald.controller.stepwise.RangeSelector(base: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Pool, float [https://docs.python.org/3/library/functions.html#float]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]], *rules: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Pool, float [https://docs.python.org/3/library/functions.html#float]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]]])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Container that stores rules for the range of their supply bounds

	Parameters

	
	base – base rule that has no lower bound

	rules – lower bound and its control rule

	
get_rule(supply: float [https://docs.python.org/3/library/functions.html#float])

	

	
class cobald.controller.stepwise.Stepwise(*args, **kwargs)

	Bases: Controller

Controller that selects from several strategies based on supply

	See

	UnboundStepwise allows creating Stepwise instances
via decorators.

	
async run()

	Service entry point

	
class cobald.controller.stepwise.UnboundStepwise(base: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Pool, float [https://docs.python.org/3/library/functions.html#float]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Decorator interface for constructing a Stepwise controller

Apply this as a decorator to a ControlRule callable to create
a basic controller skeleton.
The initial callable forms the base rule.
Additional rules can be added for specific supply thresholds
using add().

The skeleton can be used like a regular Controller:
calling it with a Pool and update interval creates
a Controller instance with the given rules for the
Pool.

initial controller skeleton from base case
@stepwise
def control(pool: Pool, interval):
 return 10

additional rules above specific supply thresholds
@control.add(supply=10)
def quantized(pool: Pool, interval):
 if pool.utilisation < 0.5:
 return pool.demand - 1
 elif pool.allocation > 0.5:
 return pool.demand + 1

@control.add(supply=100)
def continuous(pool: Pool, interval):
 if pool.utilisation < 0.5:
 return pool.demand * 1.1
 elif pool.allocation > 0.5:
 return pool.demand * 0.9

create controller from skeleton
pipeline = control(pool, interval=10)

	
add(rule: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Pool, float [https://docs.python.org/3/library/functions.html#float]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]], *, supply: float [https://docs.python.org/3/library/functions.html#float]) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Pool, float [https://docs.python.org/3/library/functions.html#float]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]]

	
add(rule: None [https://docs.python.org/3/library/constants.html#None], *, supply: float [https://docs.python.org/3/library/functions.html#float]) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Pool, float [https://docs.python.org/3/library/functions.html#float]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]]], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Pool, float [https://docs.python.org/3/library/functions.html#float]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]]]

	Register a new rule above a given supply threshold

Registration supports a single-argument form for use as a decorator,
as well as a two-argument form for direct application.
Use the former for def or class definitions,
and the later for lambda functions and existing callables.

@control.add(supply=10)
def linear(pool, interval):
 if pool.utilisation < 0.75:
 return pool.supply - interval
 elif pool.allocation > 0.95:
 return pool.supply + interval

control.add(
 lambda pool, interval: pool.supply * (
 1.2 if pool.allocation > 0.75 else 0.9
),
 supply=100
)

	
s(*args, **kwargs) → Partial[Stepwise]

	Create an unbound prototype of this class, partially applying arguments

@stepwise
def control(pool: Pool, interval):
 return 10

pipeline = control.s(interval=20) >> pool

	Note

	The partial rules are sealed, and add()
cannot be called on it.

	
cobald.controller.stepwise.stepwise

	alias of UnboundStepwise

cobald.controller.switch module

	
class cobald.controller.switch.DemandSwitch(*args, **kwargs)

	Bases: Controller

Controller that dispatches to slaved controllers based on demand

DemandSwitch(pool, linear_control, 10, supply_control)

	Parameters

	
	target – the pool on which to regulate demand

	default – controller to use by default

	slaves – pairs of minimum demand to switch and corresponding controller

	interval – interval between adjustments in seconds

	
regulate(interval)

	

	
async run()

	Service entry point

cobald.daemon package

	
cobald.daemon.runtime = <cobald.daemon.runners.service.ServiceRunner object>

	The runner invoked on daemon startup

	
cobald.daemon.service(flavour)

	Mark a class as implementing a Service

Each Service class must have a run method, which does not take any arguments.
This method is adopt()ed after the daemon starts, unless

	the Service has been garbage collected, or

	the ServiceUnit has been cancel()ed.

For each service instance, its ServiceUnit is available at
service_instance.__service_unit__.

Subpackages

	cobald.daemon.config package
	Submodules
	cobald.daemon.config.mapping module

	cobald.daemon.config.python module

	cobald.daemon.config.yaml module

	cobald.daemon.core package
	Submodules
	cobald.daemon.core.cli module

	cobald.daemon.core.config module

	cobald.daemon.core.logger module

	cobald.daemon.core.main module

	cobald.daemon.runners package
	Submodules
	cobald.daemon.runners.async_tools module

	cobald.daemon.runners.asyncio_runner module

	cobald.daemon.runners.asyncio_watcher module

	cobald.daemon.runners.base_runner module

	cobald.daemon.runners.guard module

	cobald.daemon.runners.meta_runner module

	cobald.daemon.runners.service module

	cobald.daemon.runners.thread_runner module

	cobald.daemon.runners.trio_runner module

Submodules

	cobald.daemon.debug module

cobald.daemon.config package

Submodules

	cobald.daemon.config.mapping module

	cobald.daemon.config.python module

	cobald.daemon.config.yaml module

cobald.daemon.config.mapping module

	
exception cobald.daemon.config.mapping.ConfigurationError(what: Any [https://docs.python.org/3/library/typing.html#typing.Any], where: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
cobald.daemon.config.mapping.M

	type of a mapping element, matching JSON/YAML

alias of TypeVar(‘M’, str, int, float, bool, dict, list)

	
class cobald.daemon.config.mapping.SectionPlugin(section: str [https://docs.python.org/3/library/stdtypes.html#str], digest: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[M], Any [https://docs.python.org/3/library/typing.html#typing.Any]], requirements: PluginRequirements)

	Bases: Generic [https://docs.python.org/3/library/typing.html#typing.Generic][M]

Plugin to digest a top-level configuration section

	Parameters

	
	section – Name of the section to digest

	digest – callable that receives the section

	requirements – plugin requirements

	
property after

	

	
property before

	

	
digest

	

	
classmethod load(entry_point: EntryPoint) → SectionPlugin

	Load a plugin from a pre-parsed entry point

Parses the following options:

	required
	If present implies required=True.

	before=other
	This plugin must be processed before other.

	after=other
	This plugin must be processed after other.

	
property required

	

	
requirements

	

	
section

	

	
class cobald.daemon.config.mapping.Translator

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Translator from a mapping to an initialised object hierarchy

	
construct(mapping: dict [https://docs.python.org/3/library/stdtypes.html#dict], **kwargs)

	Construct an object from a mapping

	Parameters

	
	mapping – constructor definition, with __type__ and keyword arguments

	kwargs – additional keyword arguments to pass to the constructor

	
static load_name(absolute_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Load an object based on an absolute, dotted name

	
translate_hierarchy(structure: M, *, where: str [https://docs.python.org/3/library/stdtypes.html#str] = '', **construct_kwargs) → M

	

	
cobald.daemon.config.mapping.configure_logging(logging_mapping: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	

	
cobald.daemon.config.mapping.load_configuration(config_data: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], plugins: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][SectionPlugin] = ()) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][SectionPlugin, Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Load the configuration from a mapping, applying plugins to sections

	Parameters

	
	config_data – the raw configuration without any plugins applied

	plugins – all plugins that might apply, in order

	Returns

	the output of all applied plugins

cobald.daemon.config.python module

	
cobald.daemon.config.python.load_configuration(path)

	Load a configuration from a module stored at path

The path must end in a valid file extension for the appropriate module type,
such as .py or .pyc for a plaintext or bytecode python module.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the extension does not mark a known module type

cobald.daemon.config.yaml module

	
cobald.daemon.config.yaml.load_configuration(path: str, loader: ~typing.Type[~yaml.loader.BaseLoader] = <class 'yaml.loader.SafeLoader'>, plugins: ~typing.Tuple[~cobald.daemon.config.mapping.SectionPlugin] = ())

	

	
cobald.daemon.config.yaml.yaml_constructor(factory: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], R], *, eager: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], R]

	Convert a factory function/class to a YAML constructor

	Parameters

	
	factory – the factory function/class

	eager – whether the YAML must be evaluated eagerly

	Returns

	factory constructor

Applying this helper to a factory allows it to be used as a YAML constructor,
without it knowing about YAML itself.
It properly constructs nodes and converts
mapping nodes to factory(**node), sequence nodes to factory(*node), and
scalar nodes to factory().

For example, registering the constructor yaml_constructor(factory) as
!factory means the following YAML is converted to factory(a=0.3, b=0.7):

- !factory
 a: 0.3
 b: 0.7

Since YAML can express recursive data, nested data structures are evaluated lazily
by default. Set eager=True to enforce eager evaluation before calling the
constructor.

cobald.daemon.core package

Submodules

	cobald.daemon.core.cli module

	cobald.daemon.core.config module

	cobald.daemon.core.logger module

	cobald.daemon.core.main module

cobald.daemon.core.cli module

cobald.daemon.core.config module

	
class cobald.daemon.core.config.COBalDLoader(stream)

	Bases: SafeLoader

Loader with access to COBalD configuration constructors

	
class cobald.daemon.core.config.PipelineTranslator

	Bases: Translator

Translator for cobald pipelines

This allows for YAML configurations to have one or several pipeline elements.
Each pipeline is translated as a series of nested elements, the way a
Controller receives a
Pool.

pipeline:
 # same as ``package.module.callable(a, b, keyword1="one", keyword2="two")
 - __type__: package.module.Controller
 interval: 20
 - __type__: package.module.Pool

	
translate_hierarchy(structure, *, where='', **construct_kwargs)

	

	
cobald.daemon.core.config.add_constructor_plugins(entry_point_group: str [https://docs.python.org/3/library/stdtypes.html#str], loader: Type [https://docs.python.org/3/library/typing.html#typing.Type][BaseLoader]) → None [https://docs.python.org/3/library/constants.html#None]

	Add PyYAML constructors from an entry point group to a loader

	Parameters

	
	loader – the PyYAML loader which uses the plugins

	entry_point_group – entry point group to search

Note

This directly modifies the loader by
calling add_constructor().

	
cobald.daemon.core.config.load(config_path: str [https://docs.python.org/3/library/stdtypes.html#str])

	Load a configuration and keep it alive for the given context

	Parameters

	config_path – path to a configuration file

	
cobald.daemon.core.config.load_pipeline(content: list [https://docs.python.org/3/library/stdtypes.html#list])

	Load a cobald pipeline of Controller >> … >> Pool from a configuration section

	Parameters

	content – content of the configuration section

	Returns

	

	
cobald.daemon.core.config.load_section_plugins(entry_point_group: str [https://docs.python.org/3/library/stdtypes.html#str]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][SectionPlugin]

	Load configuration plugins from an entry point group

	Parameters

	entry_point_group – entry point group to search

	Returns

	all loaded plugins

cobald.daemon.core.logger module

	
cobald.daemon.core.logger.create_handler(target: str [https://docs.python.org/3/library/stdtypes.html#str])

	Create a handler for logging to target

	
cobald.daemon.core.logger.initialise_logging(level: str [https://docs.python.org/3/library/stdtypes.html#str], target: str [https://docs.python.org/3/library/stdtypes.html#str], short_format: bool [https://docs.python.org/3/library/functions.html#bool])

	Initialise basic logging facilities

cobald.daemon.core.main module

Daemon core specific to cobald

	
cobald.daemon.core.main.cli_run()

	Run the daemon from a command line interface

	
cobald.daemon.core.main.run(configuration: str [https://docs.python.org/3/library/stdtypes.html#str], level: str [https://docs.python.org/3/library/stdtypes.html#str], target: str [https://docs.python.org/3/library/stdtypes.html#str], short_format: bool [https://docs.python.org/3/library/functions.html#bool])

	Run the daemon and all its services

cobald.daemon.runners package

Submodules

	cobald.daemon.runners.async_tools module

	cobald.daemon.runners.asyncio_runner module

	cobald.daemon.runners.asyncio_watcher module

	cobald.daemon.runners.base_runner module

	cobald.daemon.runners.guard module

	cobald.daemon.runners.meta_runner module

	cobald.daemon.runners.service module

	cobald.daemon.runners.thread_runner module

	cobald.daemon.runners.trio_runner module

cobald.daemon.runners.async_tools module

cobald.daemon.runners.asyncio_runner module

	
class cobald.daemon.runners.asyncio_runner.AsyncioRunner(asyncio_loop: AbstractEventLoop)

	Bases: BaseRunner

Runner for coroutines with asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio]

All active payloads are actively cancelled when the runner is closed.

	
async aclose()

	Shut down this runner

	
flavour = <module 'asyncio' from '/home/docs/.pyenv/versions/3.7.9/lib/python3.7/asyncio/__init__.py'>

	

	
async manage_payloads()

	Implementation of managing payloads when run()

This method must continuously execute payloads sent to the runner.
It may only return when stop() is called
or if any orphaned payload return or raise.
In the latter case, OrphanedReturn or the raised exception
must re-raised by this method.

	
register_payload(payload: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable]])

	Register payload for background execution in a threadsafe manner

This runs payload as an orphaned background task as soon as possible.
It is an error for payload to return or raise anything without handling it.

	
run_payload(payload: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Coroutine [https://docs.python.org/3/library/typing.html#typing.Coroutine]])

	Execute payload and return its result in a threadsafe manner

This runs payload as soon as possible, blocking until completion.
Should payload return or raise anything, it is propagated to the caller.

cobald.daemon.runners.asyncio_watcher module

cobald.daemon.runners.base_runner module

	
class cobald.daemon.runners.base_runner.BaseRunner(asyncio_loop: AbstractEventLoop)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Concurrency backend on top of asyncio

	
abstract async aclose()

	Shut down this runner

	
flavour = None

	

	
abstract async manage_payloads()

	Implementation of managing payloads when run()

This method must continuously execute payloads sent to the runner.
It may only return when stop() is called
or if any orphaned payload return or raise.
In the latter case, OrphanedReturn or the raised exception
must re-raised by this method.

	
async ready()

	Wait until the runner is ready to accept payloads

	
abstract register_payload(payload)

	Register payload for background execution in a threadsafe manner

This runs payload as an orphaned background task as soon as possible.
It is an error for payload to return or raise anything without handling it.

	
async run()

	Execute all current and future payloads in an asyncio coroutine

This method will continuously execute payloads sent to the runner.
It only returns when stop() is called
or if any orphaned payload returns or raises.
In the latter case, OrphanedReturn or the raised exception
is re-raised by this method.

Implementations should override manage_payloads()
to customize their specific parts.

	
abstract run_payload(payload)

	Execute payload and return its result in a threadsafe manner

This runs payload as soon as possible, blocking until completion.
Should payload return or raise anything, it is propagated to the caller.

	
stop()

	Stop execution of all current and future payloads and block until success

	
exception cobald.daemon.runners.base_runner.OrphanedReturn(who, value)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

A runnable returned a value without anyone to receive it

cobald.daemon.runners.guard module

	
cobald.daemon.runners.guard.exclusive(via=<built-in function allocate_lock>) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[C], C]

	Mark a callable as exclusive

	Parameters

	via – factory for a Lock to guard the callable

Guards the callable against being entered again before completion.
Explicitly raises a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] on violation.

	Note

	If applied to a method, it is exclusive across all instances.

cobald.daemon.runners.meta_runner module

	
class cobald.daemon.runners.meta_runner.MetaRunner

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Unified interface to schedule subroutines and coroutines for concurrent execution

	
register_payload(*payloads, flavour: module)

	Queue one or more payloads for execution after its runner is started

	
run()

	Run all runners, blocking until completion or error

	
run_payload(payload, *, flavour: module)

	Execute one payload and return its output

This method will block until the payload is completed.
It is an error to call it during initialisation before the runners are started.

	
runner_types = (<class 'cobald.daemon.runners.trio_runner.TrioRunner'>, <class 'cobald.daemon.runners.asyncio_runner.AsyncioRunner'>, <class 'cobald.daemon.runners.thread_runner.ThreadRunner'>)

	

	
property runners

	

	
stop()

	Stop all runners

cobald.daemon.runners.service module

	
class cobald.daemon.runners.service.ServiceRunner(accept_delay: float [https://docs.python.org/3/library/functions.html#float] = 1)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Runner for coroutines, subroutines and services

The service runner prevents silent failures by tracking concurrent tasks
and therefore provides safer concurrency.
If any task fails with an exception or provides
unexpected output values, this is registered as an error; the runner will
gracefully shut down all tasks in this case.

To provide async concurrency, the runner also manages common
async event loops and tracks them for failures as well. As a result,
async code should usually use the “current” event loop directly.

	
accept()

	Start accepting synchronous, asynchronous and service payloads

Since services are globally defined, only one ServiceRunner
may accept() payloads at any time.

	
adopt(payload, *args, flavour: module, **kwargs)

	Concurrently run payload in the background

If *args* and/or **kwargs are provided, pass them to payload
upon execution.

	
execute(payload, *args, flavour: module, **kwargs)

	Synchronously run payload and provide its output

If *args* and/or **kwargs are provided, pass them to payload
upon execution.

	
shutdown()

	Shutdown the accept loop and stop running payloads

	
class cobald.daemon.runners.service.ServiceUnit(service, flavour)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Definition for running a service

	Parameters

	
	service – the service to run

	flavour – runner flavour to use for running the service

	
property running

	

	
start(runner: MetaRunner)

	

	
classmethod units() → Set [https://docs.python.org/3/library/typing.html#typing.Set][ServiceUnit]

	Container of all currently defined units

	
cobald.daemon.runners.service.service(flavour)

	Mark a class as implementing a Service

Each Service class must have a run method, which does not take any arguments.
This method is adopt()ed after the daemon starts, unless

	the Service has been garbage collected, or

	the ServiceUnit has been cancel()ed.

For each service instance, its ServiceUnit is available at
service_instance.__service_unit__.

cobald.daemon.runners.thread_runner module

	
class cobald.daemon.runners.thread_runner.ThreadRunner(asyncio_loop: AbstractEventLoop)

	Bases: BaseRunner

Runner for subroutines with threading [https://docs.python.org/3/library/threading.html#module-threading]

Active payloads are not cancelled when the runner is closed.
Only program termination forcefully cancels leftover payloads.

	
async aclose()

	Shut down this runner

	
flavour = <module 'threading' from '/home/docs/.pyenv/versions/3.7.9/lib/python3.7/threading.py'>

	

	
async manage_payloads()

	Implementation of managing payloads when run()

This method must continuously execute payloads sent to the runner.
It may only return when stop() is called
or if any orphaned payload return or raise.
In the latter case, OrphanedReturn or the raised exception
must re-raised by this method.

	
register_payload(payload)

	Register payload for background execution in a threadsafe manner

This runs payload as an orphaned background task as soon as possible.
It is an error for payload to return or raise anything without handling it.

	
run_payload(payload)

	Execute payload and return its result in a threadsafe manner

This runs payload as soon as possible, blocking until completion.
Should payload return or raise anything, it is propagated to the caller.

cobald.daemon.runners.trio_runner module

	
class cobald.daemon.runners.trio_runner.TrioRunner(asyncio_loop: AbstractEventLoop)

	Bases: BaseRunner

Runner for coroutines with trio [https://trio.readthedocs.io/en/stable/reference-core.html#module-trio]

All active payloads are actively cancelled when the runner is closed.

	
async aclose()

	Shut down this runner

	
flavour = <module 'trio' from '/home/docs/checkouts/readthedocs.org/user_builds/cobald/envs/stable/lib/python3.7/site-packages/trio/__init__.py'>

	

	
async manage_payloads()

	Implementation of managing payloads when run()

This method must continuously execute payloads sent to the runner.
It may only return when stop() is called
or if any orphaned payload return or raise.
In the latter case, OrphanedReturn or the raised exception
must re-raised by this method.

	
async ready()

	Wait until the runner is ready to accept payloads

	
register_payload(payload: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable]])

	Register payload for background execution in a threadsafe manner

This runs payload as an orphaned background task as soon as possible.
It is an error for payload to return or raise anything without handling it.

	
run_payload(payload: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Coroutine [https://docs.python.org/3/library/typing.html#typing.Coroutine]])

	Execute payload and return its result in a threadsafe manner

This runs payload as soon as possible, blocking until completion.
Should payload return or raise anything, it is propagated to the caller.

cobald.daemon.debug module

	
class cobald.daemon.debug.NameRepr(target)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Lazy pretty formatter for name of objects

	
cobald.daemon.debug.pretty_module(obj: module) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
cobald.daemon.debug.pretty_partial(obj: partial) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
cobald.daemon.debug.pretty_ref(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	
cobald.daemon.debug.pretty_ref(obj: partial) → str [https://docs.python.org/3/library/stdtypes.html#str]

	
cobald.daemon.debug.pretty_ref(obj: module) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Pretty object reference using module.path:qual.name format

cobald.decorator package

Submodules

	cobald.decorator.buffer module

	cobald.decorator.coarser module

	cobald.decorator.limiter module

	cobald.decorator.logger module

	cobald.decorator.standardiser module

cobald.decorator.buffer module

	
class cobald.decorator.buffer.Buffer(*args, **kwargs)

	Bases: PoolDecorator

A timed buffer for changes to a pool

	Parameters

	
	target – the pool to which changes are applied

	window – interval after which changes are applied

Any changes made to demand are stored internally.
Every window seconds, the final demand is applied to target.

	
demand = 0.0

	

	
async run()

	Service entry point

cobald.decorator.coarser module

cobald.decorator.limiter module

cobald.decorator.logger module

	
class cobald.decorator.logger.Logger(target: Pool, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, message: str [https://docs.python.org/3/library/stdtypes.html#str] = 'demand = %(value)s [demand=%(demand)s, supply=%(supply)s, utilisation=%(utilisation).2f, allocation=%(allocation).2f]', level: int [https://docs.python.org/3/library/functions.html#int] = 20)

	Bases: PoolDecorator

Log a message on every change of demand

	Parameters

	
	name – name of the logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger] to log to

	message – format for message to emit on every change

	level – numerical logging level

The message parameter is used as a %-style format string with named fields.
Valid named format fields are

	value
	for the new demand being set,

	demand, supply, utilisation and allocation
	for the current state of target, and

	target
	for the target pool itself.

For example, a message of "adjust demand from %(demand)s to %(value)s"
will log the old and new demand value.

Deprecated since version 0.12.2: The consumption format field. Use allocation instead.

	
property demand

	The volume of resources to be provided by this site

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

cobald.decorator.standardiser module

	
class cobald.decorator.standardiser.Standardiser(target: Pool, minimum: float [https://docs.python.org/3/library/functions.html#float] = -inf, maximum: float [https://docs.python.org/3/library/functions.html#float] = inf, granularity: int [https://docs.python.org/3/library/functions.html#int] = 1, backlog: float [https://docs.python.org/3/library/functions.html#float] = inf, surplus: float [https://docs.python.org/3/library/functions.html#float] = inf)

	Bases: PoolDecorator

Limits for changes to the demand of a pool

	Parameters

	
	target – the pool on which changes are standardised

	minimum – minimum target.demand allowed

	maximum – maximum target.demand allowed

	granularity – granularity of target.demand

	surplus – how much target.demand may be above target.supply

	backlog – how much target.demand may be below target.supply

The supply and backlog clamp the demand such that
supply - backlog <= demand <= supply + surplus holds.

The default values apply no limits at all so that isolated limits may be used.
When several limits are set, granularity has the weakest priority,
both surplus and backlog may limit the result of granularity,
and minimum and maximum overrule all other limits.

	
property demand: float [https://docs.python.org/3/library/functions.html#float]

	The volume of resources to be provided by this site

cobald.interfaces package

Interfaces for primitives of the cobald model

Each Pool provides a varying number of resources.
A Controller adjusts the number of resources that
a Pool must provide.
Several Pools can be combined in a single
CompositePool to appear as one.
To modify how a Pool presents or digests data,
any number of PoolDecorator may proceed it.

[image: digraph graphname { graph [rankdir=LR, splines=lines, bgcolor="transparent"] controller [label=Controller] composite [label=CompositePool] decoa [label=PoolDecorator] poola, poolb [label=Pool] controller -> decoa -> composite composite -> poola composite -> poolb }]

	
class cobald.interfaces.CompositePool

	Bases: Pool

Concatenation of multiple providers for a number of indistinguishable resources

	
abstract property allocation: float [https://docs.python.org/3/library/functions.html#float]

	Fraction of the provided resources which are assigned for usage

	
abstract property children: List [https://docs.python.org/3/library/typing.html#typing.List][Pool]

	The individual resource providers making up this pool

	
abstract property demand

	The volume of resources to be provided by this pool

	
abstract property supply

	The volume of resources that is provided by this pool

	
abstract property utilisation: float [https://docs.python.org/3/library/functions.html#float]

	Fraction of the provided resources which are actively used

	
class cobald.interfaces.Controller(target: Pool)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Controller adjusting the demand in a Pool

	Parameters

	target – the resource pool for which demand is adjusted

	
classmethod s(*args, **kwargs) → Partial[C]

	Create an unbound prototype of this class, partially applying arguments

controller = Controller.s(interval=20)

pipeline = controller(rate=10) >> pool

	
class cobald.interfaces.Partial(ctor: Type [https://docs.python.org/3/library/typing.html#typing.Type][C_co], *args, __leaf__, **kwargs)

	Bases: Generic [https://docs.python.org/3/library/typing.html#typing.Generic][C_co]

Partial application and chaining of Pool Controllers
and Decorators

This class acts similar to functools.partial,
but allows for repeated application (currying) and
explicit binding via the >> operator.

incrementally prepare controller parameters
control = Partial(Controller, rate=10, interval=10)
control = control(low_utilisation=0.5, high_allocation=0.9)

apply target by chaining
pipeline = control >> Decorator() >> Pool()

	Note

	The keyword argument __leaf__ is reserved for internal usage.

	Note

	Binding Controllers and Decorators
creates a temporary PartialBind. Only binding to a
Pool as the last element creates a concrete binding.

	
args

	

	
ctor

	

	
kwargs

	

	
leaf

	

	
class cobald.interfaces.Pool

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Individual provider for a number of indistinguishable resources

	
abstract property allocation: float [https://docs.python.org/3/library/functions.html#float]

	Fraction of the provided resources which are assigned for usage

	
abstract property demand: float [https://docs.python.org/3/library/functions.html#float]

	The volume of resources to be provided by this pool

	
classmethod s(*args, **kwargs) → Partial[C]

	Create an unbound prototype of this class, partially applying arguments

pool = RemotePool.s(port=1337)

pipeline = controller >> pool(host='localhost')

	
abstract property supply: float [https://docs.python.org/3/library/functions.html#float]

	The volume of resources that is provided by this pool

	
abstract property utilisation: float [https://docs.python.org/3/library/functions.html#float]

	Fraction of the provided resources which are actively used

	
class cobald.interfaces.PoolDecorator(target: Pool)

	Bases: Pool

Decorator modifying how a pool provides resources

	Parameters

	target – the resource pool for which demand is adjusted

	
property allocation: float [https://docs.python.org/3/library/functions.html#float]

	Fraction of the provided resources which is assigned for usage

	
property demand

	The volume of resources to be provided by this site

	
classmethod s(*args, **kwargs) → Partial[C]

	Create an unbound prototype of this class, partially applying arguments

decorator = Buffer.s(window=20)

pipeline = controller >> decorator >> pool

	
property supply

	The volume of resources that is provided by this site

	
property utilisation: float [https://docs.python.org/3/library/functions.html#float]

	Fraction of the provided resources which is actively used

cobald.monitor package

Submodules

	cobald.monitor.format_json module

	cobald.monitor.format_line module

cobald.monitor.format_json module

	
class cobald.monitor.format_json.JsonFormatter(fmt: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, datefmt: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Bases: Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter]

Formatter that emits data as JSON

	Parameters

	
	fmt – default data for all records

	datefmt – format for timestamps

The datefmt parameter has almost the same meaning as
Formatter.
Setting it to None uses the default time format.
However, setting it to any other value that is boolean
false excludes the timestamp from reports.

	
format(record: LogRecord [https://docs.python.org/3/library/logging.html#logging.LogRecord])

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

cobald.monitor.format_line module

	
class cobald.monitor.format_line.LineProtocolFormatter(tags: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, resolution: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None)

	Bases: Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter]

Formatter that emits data as InfluxDB Line Protocol

	Parameters

	
	tags – record data to use as tags

	resolution – resolution of timestamps in seconds

The tags act as a whitelist for record keys if they are an iterable.
When a dictionary is supplied, its values act as default values if the
key is not in a record.

The resolution allows summarising data by downsampling the timestamps
to the given resolution, e.g. for a resolution of 10 you can expect
timestamps 10, 20, 30, …
If resolution is None the timestamp is omitted from the Line Protocol
and Telegraf will take care on setting the current timestamp.

	
format(record: LogRecord [https://docs.python.org/3/library/logging.html#logging.LogRecord]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
cobald.monitor.format_line.escape_field(field: T) → T

	

	
cobald.monitor.format_line.escape_key(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
cobald.monitor.format_line.line_protocol(name, tags: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, fields: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, timestamp: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Format a report as per InfluxDB line protocol

	Parameters

	
	name – name of the report

	tags – tags identifying the specific report

	fields – measurements of the report

	timestamp – when the measurement was taken, in seconds since the epoch

cobald.utility package

	
exception cobald.utility.InvariantError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

An invariant is violated

	
cobald.utility.enforce(condition: bool [https://docs.python.org/3/library/functions.html#bool], exception: BaseException [https://docs.python.org/3/library/exceptions.html#BaseException] = InvariantError())

	Enforce that condition is set by raising exception otherwise

This is a replacement for assert statements as part of validation.
It cannot be disabled with -O and may raise arbitrary exceptions.

def sqrt(value):
 condition(value > 0, ValueError('value must be greater than zero')
 return math.sqrt(value)

	
cobald.utility.pairwise(iterable)

	Iterator yielding consecutive pairs from iterable

Submodules

	cobald.utility.primitives module

cobald.utility.primitives module

ChangeLog

0.13 Series

Version [0.13.0] - 2022-08-16

	[Changed] Configuration is processed after daemon and asyncio initialisation

	[Changed] Daemon core implementation is based on asyncio

0.12 Series

Version [0.12.3] - 2021-10-29

	[Added] YAML !tags may be eagerly evaluated

Version [0.12.2] - 2021-09-15

	[Fixed] pipeline configuration may combine __type__ and !yaml style

	[Fixed] pipeline configuration no longer suppresses TypeError

Version [0.12.1] - 2020-04-15

	[Fixed] fallback for fitness of WeightedComposite depends on supply

Version [0.12.0] - 2020-02-26

	[Changed] Section Plugin settings are now specified via decorators

0.11 Series

Version [0.11.0] - 2020-02-24

	[Changed] COBalD configuration files may include additional sections

0.10 Series

Version [0.10.0] - 2019-09-03

	[Added] Pools can be templated via .s in Python configuration files

	[Added] YAML configuration files support plugins via !MyPlugin tags

	[Added] the cobald namespace allows for external plugin packages

	[Fixed] fixed Line Protocol sending illegal content

	[Security] YAML configuration files no longer allow arbitrary !!python/object tags

Versioning and Releases

The COBalD versioning follows Semantic Versioning [https://semver.org].
Releases are automatically pushed to PyPI from the GitHub COBalD repository [https://github.com/MatterMiners/cobald].

Versioning and API stability

COBalD is currently published only in the major version zero series.
The public API is not entirely stable, and may change between releases.
However, API changes are already kept to a minimum and
significant API changes SHOULD relate to an increase of the minor version.

Packages that depend on the COBalD major version zero series should
accept compatible release [https://www.python.org/dev/peps/pep-0440/#compatible-release] versions for minor versions.
For example, a package requiring at least cobald version 0.12.1 should
require cobald ~= 0.12.1 to not accidentally accept cobald >= 0.13.0.

Release Process

There is no fixed schedule for releases;
a release is manually started whenever significant changes have accumulated
or a bugfix requires a prompt publication.

Note

The following section is only relevant for maintainers of COBalD.

Releases are automatically published to PyPI when a GitHub release is created.
Each release should be prepared and reviewed via a pull request.

	
	Create a new branch releases/v<version> and pull request
	
	Add all to-be-released pull requests to the description

	
	Review all changes added by the new release
	
	Ensure naming, unittests and docs are appropriate

	
	Merge new version metadata (e.g. v3.9.2) to repository
	
	Fix change fragment version via change log … release 3.9.2

	Adjust and commit __version__ = "3.9.2" in cobald.__about__

	Create a git tag such as git tag -a "v3.9.2" -m "important changes"

Once the pull request has been reviewed and merged, create a new GitHub release [https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository].

 Python Module Index

 c |
 d |
 i |
 m |
 u

 		 	

 		
 c	

 	[image: -]
 	
 cobald.composite	

 	
 	
 cobald.composite.factory	

 	
 	
 cobald.composite.uniform	

 	
 	
 cobald.composite.weighted	

 	[image: -]
 	
 cobald.controller	

 	
 	
 cobald.controller.linear	

 	
 	
 cobald.controller.relative_supply	

 	
 	
 cobald.controller.stepwise	

 	
 	
 cobald.controller.switch	

 		 	

 		
 d	

 	[image: -]
 	
 cobald.daemon	

 	
 	
 cobald.daemon.config	

 	
 	
 cobald.daemon.config.mapping	

 	
 	
 cobald.daemon.config.python	

 	
 	
 cobald.daemon.config.yaml	

 	
 	
 cobald.daemon.core	

 	
 	
 cobald.daemon.core.cli	

 	
 	
 cobald.daemon.core.config	

 	
 	
 cobald.daemon.core.logger	

 	
 	
 cobald.daemon.core.main	

 	
 	
 cobald.daemon.debug	

 	
 	
 cobald.daemon.runners	

 	
 	
 cobald.daemon.runners.asyncio_runner	

 	
 	
 cobald.daemon.runners.base_runner	

 	
 	
 cobald.daemon.runners.guard	

 	
 	
 cobald.daemon.runners.meta_runner	

 	
 	
 cobald.daemon.runners.service	

 	
 	
 cobald.daemon.runners.thread_runner	

 	
 	
 cobald.daemon.runners.trio_runner	

 	[image: -]
 	
 cobald.decorator	

 	
 	
 cobald.decorator.buffer	

 	
 	
 cobald.decorator.coarser	

 	
 	
 cobald.decorator.limiter	

 	
 	
 cobald.decorator.logger	

 	
 	
 cobald.decorator.standardiser	

 		 	

 		
 i	

 	
 	
 cobald.interfaces	

 		 	

 		
 m	

 	[image: -]
 	
 cobald.monitor	

 	
 	
 cobald.monitor.format_json	

 	
 	
 cobald.monitor.format_line	

 		 	

 		
 u	

 	[image: -]
 	
 cobald.utility	

 	
 	
 cobald.utility.primitives	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Y

A

 	
 	accept() (cobald.daemon.runners.service.ServiceRunner method)

 	aclose() (cobald.daemon.runners.asyncio_runner.AsyncioRunner method)

 	(cobald.daemon.runners.base_runner.BaseRunner method)

 	(cobald.daemon.runners.thread_runner.ThreadRunner method)

 	(cobald.daemon.runners.trio_runner.TrioRunner method)

 	add() (cobald.controller.stepwise.UnboundStepwise method)

 	add_constructor_plugins() (in module cobald.daemon.core.config)

 	adopt() (cobald.daemon.runners.service.ServiceRunner method)

 	
 	after (cobald.daemon.config.mapping.SectionPlugin property)

 	allocation (cobald.composite.factory.FactoryPool property)

 	(cobald.composite.uniform.UniformComposite property)

 	(cobald.composite.weighted.WeightedComposite property)

 	(cobald.interfaces.CompositePool property)

 	(cobald.interfaces.Pool property)

 	(cobald.interfaces.PoolDecorator property)

 	args (cobald.interfaces.Partial attribute)

 	AsyncioRunner (class in cobald.daemon.runners.asyncio_runner)

B

 	
 	BaseRunner (class in cobald.daemon.runners.base_runner)

 	
 	before (cobald.daemon.config.mapping.SectionPlugin property)

 	Buffer (class in cobald.decorator.buffer)

C

 	
 	children (cobald.composite.factory.FactoryPool property)

 	(cobald.composite.uniform.UniformComposite attribute)

 	(cobald.composite.weighted.WeightedComposite attribute)

 	(cobald.interfaces.CompositePool property)

 	cli_run() (in module cobald.daemon.core.main)

 	
 cobald.composite

 	module

 	
 cobald.composite.factory

 	module

 	
 cobald.composite.uniform

 	module

 	
 cobald.composite.weighted

 	module

 	
 cobald.controller

 	module

 	
 cobald.controller.linear

 	module

 	
 cobald.controller.relative_supply

 	module

 	
 cobald.controller.stepwise

 	module

 	
 cobald.controller.switch

 	module

 	
 cobald.daemon

 	module

 	
 cobald.daemon.config

 	module

 	
 cobald.daemon.config.mapping

 	module

 	
 cobald.daemon.config.python

 	module

 	
 cobald.daemon.config.yaml

 	module

 	
 cobald.daemon.core

 	module

 	
 cobald.daemon.core.cli

 	module

 	
 cobald.daemon.core.config

 	module

 	
 cobald.daemon.core.logger

 	module

 	
 cobald.daemon.core.main

 	module

 	
 cobald.daemon.debug

 	module

 	
 cobald.daemon.runners

 	module

 	
 	
 cobald.daemon.runners.asyncio_runner

 	module

 	
 cobald.daemon.runners.base_runner

 	module

 	
 cobald.daemon.runners.guard

 	module

 	
 cobald.daemon.runners.meta_runner

 	module

 	
 cobald.daemon.runners.service

 	module

 	
 cobald.daemon.runners.thread_runner

 	module

 	
 cobald.daemon.runners.trio_runner

 	module

 	
 cobald.decorator

 	module

 	
 cobald.decorator.buffer

 	module

 	
 cobald.decorator.coarser

 	module

 	
 cobald.decorator.limiter

 	module

 	
 cobald.decorator.logger

 	module

 	
 cobald.decorator.standardiser

 	module

 	
 cobald.interfaces

 	module

 	
 cobald.monitor

 	module

 	
 cobald.monitor.format_json

 	module

 	
 cobald.monitor.format_line

 	module

 	
 cobald.utility

 	module

 	
 cobald.utility.primitives

 	module

 	COBalDLoader (class in cobald.daemon.core.config)

 	CompositePool (class in cobald.interfaces)

 	ConfigurationError

 	configure_logging() (in module cobald.daemon.config.mapping)

 	construct() (cobald.daemon.config.mapping.Translator method)

 	Controller (class in cobald.interfaces)

 	ControlRule (in module cobald.controller.stepwise)

 	create_handler() (in module cobald.daemon.core.logger)

 	ctor (cobald.interfaces.Partial attribute)

D

 	
 	demand (cobald.composite.factory.FactoryPool property)

 	(cobald.composite.uniform.UniformComposite property)

 	(cobald.composite.weighted.WeightedComposite property)

 	(cobald.decorator.buffer.Buffer attribute)

 	(cobald.decorator.logger.Logger property)

 	(cobald.decorator.standardiser.Standardiser property)

 	(cobald.interfaces.CompositePool property)

 	(cobald.interfaces.Pool property)

 	(cobald.interfaces.PoolDecorator property)

 	
 	DemandSwitch (class in cobald.controller.switch)

 	digest (cobald.daemon.config.mapping.SectionPlugin attribute)

E

 	
 	enforce() (in module cobald.utility)

 	escape_field() (in module cobald.monitor.format_line)

 	
 	escape_key() (in module cobald.monitor.format_line)

 	exclusive() (in module cobald.daemon.runners.guard)

 	execute() (cobald.daemon.runners.service.ServiceRunner method)

F

 	
 	FactoryPool (class in cobald.composite.factory)

 	flavour (cobald.daemon.runners.asyncio_runner.AsyncioRunner attribute)

 	(cobald.daemon.runners.base_runner.BaseRunner attribute)

 	(cobald.daemon.runners.thread_runner.ThreadRunner attribute)

 	(cobald.daemon.runners.trio_runner.TrioRunner attribute)

 	
 	format() (cobald.monitor.format_json.JsonFormatter method)

 	(cobald.monitor.format_line.LineProtocolFormatter method)

G

 	
 	get_rule() (cobald.controller.stepwise.RangeSelector method)

I

 	
 	Indistinguishable Resources

 	
 	initialise_logging() (in module cobald.daemon.core.logger)

 	InvariantError

J

 	
 	JsonFormatter (class in cobald.monitor.format_json)

K

 	
 	kwargs (cobald.interfaces.Partial attribute)

L

 	
 	leaf (cobald.interfaces.Partial attribute)

 	line_protocol() (in module cobald.monitor.format_line)

 	LinearController (class in cobald.controller.linear)

 	LineProtocolFormatter (class in cobald.monitor.format_line)

 	load() (cobald.daemon.config.mapping.SectionPlugin class method)

 	(in module cobald.daemon.core.config)

 	
 	load_configuration() (in module cobald.daemon.config.mapping)

 	(in module cobald.daemon.config.python)

 	(in module cobald.daemon.config.yaml)

 	load_name() (cobald.daemon.config.mapping.Translator static method)

 	load_pipeline() (in module cobald.daemon.core.config)

 	load_section_plugins() (in module cobald.daemon.core.config)

 	Logger (class in cobald.decorator.logger)

M

 	
 	M (in module cobald.daemon.config.mapping)

 	manage_payloads() (cobald.daemon.runners.asyncio_runner.AsyncioRunner method)

 	(cobald.daemon.runners.base_runner.BaseRunner method)

 	(cobald.daemon.runners.thread_runner.ThreadRunner method)

 	(cobald.daemon.runners.trio_runner.TrioRunner method)

 	MetaRunner (class in cobald.daemon.runners.meta_runner)

 	
 module

 	cobald.composite

 	cobald.composite.factory

 	cobald.composite.uniform

 	cobald.composite.weighted

 	cobald.controller

 	cobald.controller.linear

 	cobald.controller.relative_supply

 	cobald.controller.stepwise

 	cobald.controller.switch

 	cobald.daemon

 	cobald.daemon.config

 	cobald.daemon.config.mapping

 	cobald.daemon.config.python

 	cobald.daemon.config.yaml

 	cobald.daemon.core

 	cobald.daemon.core.cli

 	cobald.daemon.core.config

 	cobald.daemon.core.logger

 	cobald.daemon.core.main

 	cobald.daemon.debug

 	cobald.daemon.runners

 	cobald.daemon.runners.asyncio_runner

 	cobald.daemon.runners.base_runner

 	cobald.daemon.runners.guard

 	cobald.daemon.runners.meta_runner

 	cobald.daemon.runners.service

 	cobald.daemon.runners.thread_runner

 	cobald.daemon.runners.trio_runner

 	cobald.decorator

 	cobald.decorator.buffer

 	cobald.decorator.coarser

 	cobald.decorator.limiter

 	cobald.decorator.logger

 	cobald.decorator.standardiser

 	cobald.interfaces

 	cobald.monitor

 	cobald.monitor.format_json

 	cobald.monitor.format_line

 	cobald.utility

 	cobald.utility.primitives

N

 	
 	name (cobald.decorator.logger.Logger property)

 	
 	NameRepr (class in cobald.daemon.debug)

O

 	
 	Opportunistic Resources

 	
 	OrphanedReturn

P

 	
 	pairwise() (in module cobald.utility)

 	Partial (class in cobald.interfaces)

 	PipelineTranslator (class in cobald.daemon.core.config)

 	Pool

 	(class in cobald.interfaces)

 	
 	PoolDecorator (class in cobald.interfaces)

 	pretty_module() (in module cobald.daemon.debug)

 	pretty_partial() (in module cobald.daemon.debug)

 	pretty_ref() (in module cobald.daemon.debug)

R

 	
 	RangeSelector (class in cobald.controller.stepwise)

 	ready() (cobald.daemon.runners.base_runner.BaseRunner method)

 	(cobald.daemon.runners.trio_runner.TrioRunner method)

 	register_payload() (cobald.daemon.runners.asyncio_runner.AsyncioRunner method)

 	(cobald.daemon.runners.base_runner.BaseRunner method)

 	(cobald.daemon.runners.meta_runner.MetaRunner method)

 	(cobald.daemon.runners.thread_runner.ThreadRunner method)

 	(cobald.daemon.runners.trio_runner.TrioRunner method)

 	regulate() (cobald.controller.linear.LinearController method)

 	(cobald.controller.relative_supply.RelativeSupplyController method)

 	(cobald.controller.switch.DemandSwitch method)

 	RelativeSupplyController (class in cobald.controller.relative_supply)

 	required (cobald.daemon.config.mapping.SectionPlugin property)

 	requirements (cobald.daemon.config.mapping.SectionPlugin attribute)

 	run() (cobald.composite.factory.FactoryPool method)

 	(cobald.controller.linear.LinearController method)

 	(cobald.controller.relative_supply.RelativeSupplyController method)

 	(cobald.controller.stepwise.Stepwise method)

 	(cobald.controller.switch.DemandSwitch method)

 	(cobald.daemon.runners.base_runner.BaseRunner method)

 	(cobald.daemon.runners.meta_runner.MetaRunner method)

 	(cobald.decorator.buffer.Buffer method)

 	(in module cobald.daemon.core.main)

 	
 	run_payload() (cobald.daemon.runners.asyncio_runner.AsyncioRunner method)

 	(cobald.daemon.runners.base_runner.BaseRunner method)

 	(cobald.daemon.runners.meta_runner.MetaRunner method)

 	(cobald.daemon.runners.thread_runner.ThreadRunner method)

 	(cobald.daemon.runners.trio_runner.TrioRunner method)

 	runner_types (cobald.daemon.runners.meta_runner.MetaRunner attribute)

 	runners (cobald.daemon.runners.meta_runner.MetaRunner property)

 	running (cobald.daemon.runners.service.ServiceUnit property)

 	runtime (in module cobald.daemon)

S

 	
 	s() (cobald.controller.stepwise.UnboundStepwise method)

 	(cobald.interfaces.Controller class method)

 	(cobald.interfaces.Pool class method)

 	(cobald.interfaces.PoolDecorator class method)

 	section (cobald.daemon.config.mapping.SectionPlugin attribute)

 	SectionPlugin (class in cobald.daemon.config.mapping)

 	service() (in module cobald.daemon)

 	(in module cobald.daemon.runners.service)

 	ServiceRunner (class in cobald.daemon.runners.service)

 	ServiceUnit (class in cobald.daemon.runners.service)

 	shutdown() (cobald.daemon.runners.service.ServiceRunner method)

 	
 	Standardiser (class in cobald.decorator.standardiser)

 	start() (cobald.daemon.runners.service.ServiceUnit method)

 	Stepwise (class in cobald.controller.stepwise)

 	stepwise (in module cobald.controller.stepwise)

 	stop() (cobald.daemon.runners.base_runner.BaseRunner method)

 	(cobald.daemon.runners.meta_runner.MetaRunner method)

 	supply (cobald.composite.factory.FactoryPool property)

 	(cobald.composite.uniform.UniformComposite property)

 	(cobald.composite.weighted.WeightedComposite property)

 	(cobald.interfaces.CompositePool property)

 	(cobald.interfaces.Pool property)

 	(cobald.interfaces.PoolDecorator property)

T

 	
 	ThreadRunner (class in cobald.daemon.runners.thread_runner)

 	translate_hierarchy() (cobald.daemon.config.mapping.Translator method)

 	(cobald.daemon.core.config.PipelineTranslator method)

 	
 	Translator (class in cobald.daemon.config.mapping)

 	TrioRunner (class in cobald.daemon.runners.trio_runner)

U

 	
 	UnboundStepwise (class in cobald.controller.stepwise)

 	UniformComposite (class in cobald.composite.uniform)

 	units() (cobald.daemon.runners.service.ServiceUnit class method)

 	utilisation (cobald.composite.factory.FactoryPool property)

 	(cobald.composite.uniform.UniformComposite property)

 	(cobald.composite.weighted.WeightedComposite property)

 	(cobald.interfaces.CompositePool property)

 	(cobald.interfaces.Pool property)

 	(cobald.interfaces.PoolDecorator property)

W

 	
 	WeightedComposite (class in cobald.composite.weighted)

Y

 	
 	yaml_constructor() (in module cobald.daemon.config.yaml)

Changelog Fragments

This folder contains fragments for the dev_tools/change-log.py tool to
create formatted changelogs. Fragments are YAML files that contain meta-data
and human-readable descriptions of changes. Files are mappings that must contain
the fields category, summary, and description` and optionally the fields
``pull requests and issues; the naming convention of files is
<first pull request>.<topic>.yaml.
Both summary and description fields are interpreted as reStructured Text.

file `39.line_format.fixes.yaml`
any of 'added', 'changed', 'fixed', 'deprecated', 'removed', 'security'
category: fixed
short description of changes
summary: "fixed Line Protocol sending illegal content"
pull requests of this change
pull requests:
 - 39
 - 44
issues solved by this change
issues:
 - 42
long description of changes
description: |
 The Line Protocol implementation has been extended to remove cases that
 previously led to illegal output. ``None`` values are
 forbidden, and strings are escaped in field values, tags, and measurements.

New changes are assigned to the “next” release. Release information is added
automatically when a release is prepared.

 _images/graphviz-83618c547ef88313b0e5dd8209ed5dcd88c59afc.png
CompositePool

_images/graphviz-ab34cbbe89ba6b02e14a93ec6839681905c7f524.png
Resource 1

_images/graphviz-2d9bafa93deedd74a093b305731f8bbe641a83e1.png
Decorator
Decorator

Composite

Gommller b@ormor

Resource 1 and 2

_images/graphviz-750eb7ce02b713be61e066681b73ee3d8f2ef1ac.png

_static/file.png

_images/pool_allocation_cpu_ram.png
RAM

_static/minus.png

_static/plus.png

_images/cobald_logo_120.png
=)

nav.xhtml

 Table of Contents

 		
 COBalD – the Opportunistic Balancing Daemon

